005120

Features

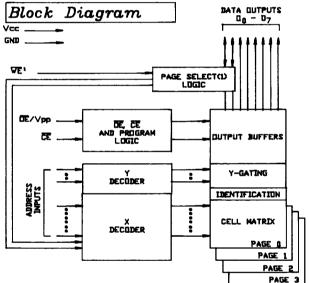
Paged Configurations with Page Reset on Power-Up
AT27C512 - Not Paged, 64K x 8
AT27C513 - 4 Pages, 16K x 8

AT27C515 - 2 Pages, 32K x 8

Low Power CMOS Operation

40mA max. Active at 5MHx 100µA max. Standby Fast Read Access Time — 120ns

5V ± 10% Supply


High Reliability CMOS Technology 2000V ESD Protection

200mA Latchup Immunity
Two-Line Control & JEDEC Standard Pinout

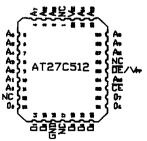
CMOS & TTL Compatible

Integrated Product Identification Code

Full Military, Commercial and Industrial Temperature Ranges

ATE7C513 A - Au 4 131,0	Part 270512 270513		Pages 1	Brts Per Page 524,288 131,072 262,144
-------------------------	--------------------------	--	---------	---

(1) AT27C513 and AT27C515 only


Pin Configuration

			STA	70515			
		$\overline{}$	ATE	7C513			
			ATE	7C512			
					, \	_ \	. \
₽ E	N.C.	Ass	41	28 p 27 p	Vec	Vcc	CCA4 An An An An PP CCA4 An An An An PP CCA4 An An An PP CCA4 An An An PP CCA4 An An An PP AN PP OF COMMENT OF COMME
₩ # * * # # # # # # # # # # # # # # # #	N.C. Ar Ar Ar Ar Ar Ar	ARE AT AS AS	2 3 4 5 0 5 0 6 7 0 8 0 10	26 p p p p p p p p p p p p p p p p p p p	Au	VE As	AL AL
As As	As As	A.	95	24 b 23 b	As As	As As	**
As As	As	A+ As Ac A1	97	55 5	Œ∕Vpp	Œ∕Vpp	Œ∕Vpp
A1	As As I/Ds	Ai Ai	9.9	22 p 21 p 20 p 19 p	₫.	Œ	Œ
1/0,	1/0: 1/0:	De Di	011	18 E	Ok Cha	De De	Os.
De De	De GND	De GND	012 013 014	18 p 17 p 16 p 15 p	04 04	04 Da	- G
4.40			1 7.7		"		"

CHIP ENABLE
DUTPUT ENABLE/Vpp
PAGE WRITE ENABLE
INPUT/DUTPUT
CTUTPUTS
NO CONNECT
\$445444

A. - Am ADDRESS

PIN NAMES

Note: Pin 1 (N.C.) on AT27C513 can be left floating or tied to any voltage between -0.1V and Vcc + 1V

1

512K CMOS

UV ERASABLE

PROM

AT27C513 AT27C515

Description

The ATMEL 27C512, 27C513, 27C515 is a family of low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memories (EPROM). These devices require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, making this part compatible with high performance microprocessor systems by eliminating the need for speed-reducing WAIT states.

The AT27C512 is organized 64K x 8. The AT27C513 and AT27C515 feature page mode addressing. ATMEL's 27C513 has 4 pages, each organized 16K x 8, and provides a compatible upgrade for existing 128K EPROM based designs. The AT27C515 presents 2 pages of 32K x 8 memory to allow a doubling of available memory in existing systems using 256K EPROM. Both increased memory capacity and improved system performance can now be easily retrofitted without using costly additional board space.

The AT27C513 and AT27C515 have an automatic page latch clear circuit to ensure consistent page selection during system bootstrapping. The page latches are automatically reset to page 0 upon power—up (resets typically for $V_{\infty} < 3.8 \text{V}$).

ATMEL's 1.5 micron CMOS technology provides optimum speed, low power and high noise immunity. Power consumption is typically only 15mA in Active Mode and less than 10uA in Standby. In addition to the speed, power and reliability advantages of the CMOS process, the CMOS technology is an extension of ATMEL's high quality and highly manufacturable floating poly EPROM technology.

These parts are available in industry standard JEDEC-approved 28-pin DIP or 32-pad LCC packages. All devices feature a two line control (CE,OE) to give designers the flexibility to prevent bus contention.

With a high density 64K byte storage capability, the ATMEL 512K EPROMs allow firmware to be stored reliably and to be quickly accessed by the system without the delays of mass storage media.

All ATMEL 512K EPROMs have additional features to ensure high quality and efficient production use. The fast programming algorithm reduces the time required to program the chip and guarantees reliable programming. Programming time is typically 4 msec per byte. The Integrated Product Identification Code electronically ident—ifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Operating Modes

PIN	CE	DE/VE	WE	ΑI	Vœ	Outputs	I3/Di
MODE	(20)	(55)			(28)	(13,15-19)	(11,12)
Read	$\vee_{\mathbf{n}}$	V _{IL}	V _{BH}			Dour	Down
Output Disable	$\vee_{\mathbf{L}}$	V _{2H}	V _{2H}	X¹		High Z	High Z
Standby	$\vee_{\mathtt{m}}$	X	X	X	∨ _{cc}	High Z	High Z
Fast PGM ²	$\vee_{\mathbf{n}}$	V _{PP}	V ₂₀₄	Αi	Vcc	D_{IN}	$\mathbb{D}_{\mathtt{IN}}$
PGM Inhibit	$\vee_{\mathtt{IH}}$	$\vee_{\tt PP}$	$\vee_{\mathtt{m}}$	X			High Z
Page Select Write ³	V _{IL}	V _M	$\vee_{\mathbf{L}}$	X		High Z	Page Dm
Product Identification	V1.	V _B	$\vee_{\mathtt{JH}}$	45		Ident.Code	Ident Code

Notesi

- 1. X can be $ee_{ exttt{ iny L}}$ or $ee_{ exttt{ iny L}}$
- 2. Refer to programming characteristics.
- AT27C513 and AT27C515 only.
- 4. $V_{H} = 12.0 \pm 0.5 V$.
- 5. Two identifier bytes may be selected. All Ai inputs are held low (V_n) , except A, which is set to V_n and A, which is toggled low (V_n) to select the Manufacturer's Identification byte and high (V_n) to select the Device Code byte.

Page Selection Data (27C513 & 27C515 Only)

Part		270	513	27C515
Input	/□utput Pin	I/O ₁	I/□₀	I∕□₀
Page Selection	,	[12]	[11]	[11]
Select Page 0		$\vee_{\mathtt{1\!L}}$	$\vee_{\mathtt{r}}$	V ₁ L
Select Page 1		$\vee_{\mathtt{n}}$	V _{IH}	V IH
Select Page 2		$\vee_{\mathtt{JH}}$	$\vee_{\mathtt{1L}}$	
Select Page 3		V _{IH}	V _{1H}	_

Absolute Maximum Ratings*

Temperature Under Bias	-55°C to +125°C
Storage Temperature	-65°C to +150°C
All Input Voltages (including N.C. Pins) w/Respect to Ground	-0.6∨ to +6.25∨
All Dutput Voltages w/Respect to Ground	-0.6∨ to ∨ _∞ +0.6∨
Voltage on Pin 24 w/Respect to Ground	-0.6∨ to +13.5∨
V _{PP} Supply Voltage w/Respect to Ground	-0.6∨ to +14.0∨
Integrated UV Erase Dose	7258 W*sec/cm²

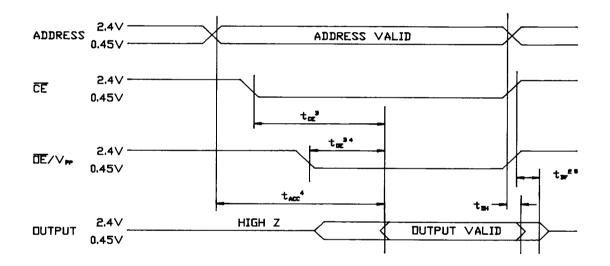
*NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Conditions for Read and Page Select Operation

		27C512-12 27C513-12 27C515-12	27C512-15 27C513-15 27C515-15	27C512-17 27C513-17 27C515-17	27C512-20 27C513-20 27C515-20	27C512-25 27C513-25 27C515-25
Operating Temperature	Com. Ind. ² Mil. ²	0°C - 70°C	0°C - 70°C -40°C- 85°C -55°C- 125°C			
V∝ Power Suppl	y¹ .	5∨± 5%	5∨±10%	5∨±10%	5∨±10%	5∨±10%

D.C. and Operating Characteristics for Read and Page Select Operation

Symbol	Parameter	Min	Max	Units	Test Conditions
IL	Input Load Current		10	Αی	$\vee_{N}=-0.1$ to $\vee_{cc}+1.0\vee$
ILD	Output Leakage Current		10	بکرن	$\bigvee_{\text{aut}} = -0.1$ to $\bigvee_{\text{cc}} +0.1\bigvee$
	Com		100	υA	$\overline{CE} = \bigvee_{xx} -0.3$ to $\bigvee_{xx} +1.0\bigvee$
Iza	V _{cc} Standby <u>Ind.Mil</u>	1	200	∆ں	CE- V & 0.5 to V & 1.0 V
	Current Com		2	MΑ	· CE=2.0 to ∨ _{cc} +1.0∨
	Ind.,Mil		3	mΑ	CE-2.0 to V _{EC} +1.0 V
r	Com		40	mΑ	f=5MHz, CE=Vı, Iıuı=0mA
Icc	V _∞ Active Current Ind.,Mil		50	mΑ	7-5M12, CL-VI 1007-0MA
$\vee_{\mathbf{L}}$	Input Low Voltage	-,1	+0.8	V	
V _{IH}	Input High Voltage	2.0	∨ _{cc} +1	V	
V _{aL}	Dutput Low Voltage		0.45	V	I _{pl} =2.1mA
V _{DH}	Dutput High Voltage -	2.4 V _{cc} −0.1		V V	I _{DH} =-400 _H A I _{DH} =-50 _U A

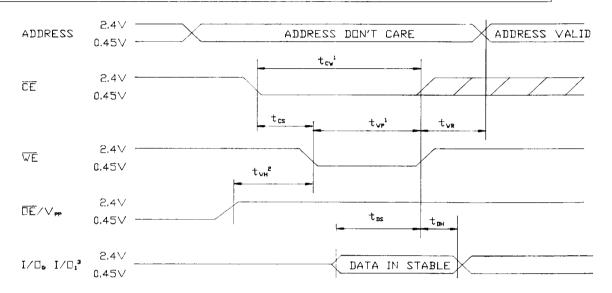

Notes

- 1. V_{cc} must be applied simultaneously or before \overline{DE}/V_{PP} and removed simultaneously or after \overline{DE}/V_{PP}
- 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.

A.C. Characteristics for Read Operation

		270513-12	270513-15	27C513-17	27C512-20 27C513-20 27C515-20	270513-25		Test
	<u>Parameter</u>	Min Max			Min Max		Units	Conditions
	Address to Dutput Delay	120	150	170	200	250	ns	CE=UE/V==Vn
	CE to Dutput Delay	120	150	170	200	250	ns	DE/V _{PP} =V _B
	DE/V _{pr} to Dutput Delay	65	70	70	75	100	ns	CE=Vn
	DE/Vm or CE High to Dutput Float	50	50	50	55	60	ns	CE=Vn
	Output Hold from Address, CE or DE/V _m whichever occurred first	,	0	, 0		0		CE=DE/Vp=Vn

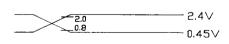
A.C. Waveforms for Read Operation'


Notesi

- Timing measurement references are 0.8V and 2.0V. Input Driving Levels are 0.45V and 2.4V, unless otherwise specified.
- 2. $t_{\rm F}$ is specified from $\overline{\rm DE}/{\rm V_{\rm PP}}$ or $\overline{\rm CE}$, whichever occurs first.
- 3. $\overline{\text{IE}}/V_{\text{PP}}$ may be delayed up to t_{RE} t_{RE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{RE} .
- 4. DE/V may be delayed up to two to after the address is valid without impact on two.
- 5. This parameter is only sampled and is not 100% tested.

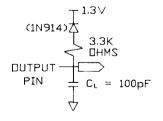
A.C. Characteristics for Page Select (27C513 & 27C515 Only)

		27C513-12	27C513-15	27C513-17	270513-20	270513-25		
		270515-12	270515-15	27C515-17	270515-20	270515-25		Test
Symbol	Parameter	Min Max		Conditions				
tcv	CE to End of Write	110	110	125	145	180	ns	DE/V _{PP} =V _{IH}
tup	Write Pulse Width	60	60	70	80	100	ns	DE/VPP=VIH
tve	Write Recovery Time	20	20	20	20	20	ns	
tps	Data Setup Time	35	35	40	45	50	ns	DE/VPP=VIH
tnH	Data Hold Time	20	20	20	20	20	ns	DE/V _{PP} =V _{IH}
tcs	CE to Write Setup Time	0	0_	0	0	0	ns	DE/V _{PP} =V _{th}
tvn	WE Low from DE/Vpp							
	High Delay Time	50	50	50	50	55	ns	


A.C. Waveforms for Page Select (27C513 & 27C515 Only)

Notes:

- 1. Writing can be terminated by either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going high after the minimum two requirement has been met.
- 2. DE/Vpp must be high during a Page Select Write.
- 3. Page Select Inputs (I/D; is only for 270513)


Input Test Waveforms and Measurement Levels

AC MEASUREMENT AC DRIVING LEVELS LEVELS

 t_R , t_F 10 to 90% \leq 20ns

Output Test Load

Note: $C_L = 100 pF$ Including Jig capacitance.

Pin Capacitance

$$(f = 1MHz T = 25^{\circ}C)$$

	TYP	MAX	UNITS	CONDITIONS
CIN	4	6	рF	$\wedge^{\text{IN}} = 0 \wedge$
Cour	8	12	рF	V _{tru1} = 0∨

Notes: 1. Typical values for nominal supply voltages.

5

D.C. Programming Characteristics

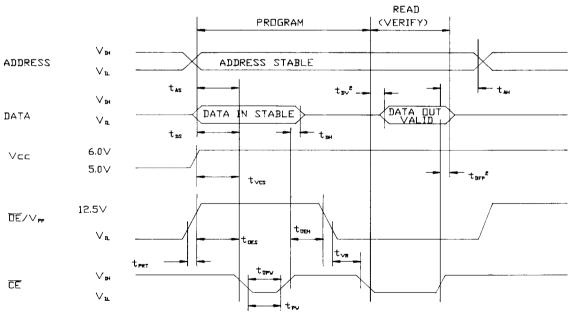
A.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{cc}=6.0\pm0.25$ V, $\overline{\Omega E}/V_{PP}=12.5\pm0.5$ V

					Test	
		Lin	nits		Conditions	
Symbol	Parameter	Min	Max	Unit	(see note	1)
ILI	Input Current		10	υÄ	V _{IN} =V _{IL} or	$\vee_{\mathtt{p}_{H}}$
1	(All Inputs)					
V _{IL}	Input Low Level	-0.1	8.0	V		
	(All Inputs)					
V _{IH}	Input High Level	2.0	Vcc+1	V		
∨ _{DL}	Dutput Low Voltage		0.45	V	Io.=2.1mA	
ļ	During Verify					
V _{DH}	□utput High Voltage	2.4			I_u,=-400 _v A	
	During Verify					
Icce	V∞ Supply Current		40	mΑ		
1	(Program & Verify)					
IPPE	□E/V _{PP} Supply		25	mΑ	CE=∨ı	
L	Current (Program)					
V _{ID}	A, Product Iden-	11.5	12.5			
-	tification Voltage					

T_=25±5°C, V==6.0±0.25V, DE/V==12.5±0.5V

		Limits				
	Parameter	Min	Тур	Max	Unit	
tas	Address Setup Time	2			Συ	
toes	DE/Vm Setup Time	2			uS	
t _{DEH}	DE/V _{PP} Hold Time	2			کر	
tos	Data Setup Time	2			υS	
t _{AH}	Address Hold Time	0			ųS	
t _m	Data Hold Time	2			uS	
torp	CE High to Dutput	0	-	130	ns	
	Float Delay					
t _{ves}	V∝ Setup Time	2			ی	
t _{PV} 3	CE Initial Program Pulse Width	0.95	1.0	1.05	MS	
t _{orv} ⁴	CE Overprogram Pulse Width	2.85		78.75	ms	
t _{rv}	Data Valid from CE			1	ک	
tvR	DE/Vm Recovery Time	2			ڪر	
terr	DE/V Pulse Rise Time	50			ns	
	During Programming					


Notesi

- Vcc must be applied simultaneously or before □E/V_{PP} and removed simultaneously or after □E/V_{PP}
 This parameter is only sampled and is not 100% tested.
- This parameter is only sampled and is not now tested. Butput Float is defined as the point where data is no longer driven see timing diagram.
 Initial Program Pulse width tolerance is 1 msec±5%.
 The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the interesting souther value.
- iteration counter value X.

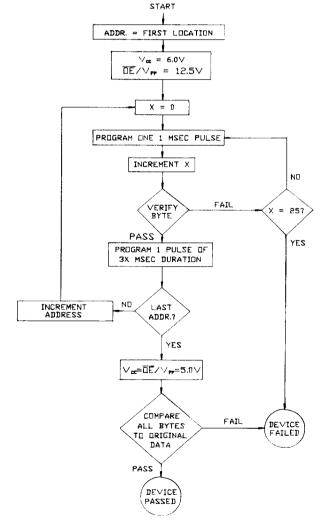
*A.C. Conditions of Test

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	0.8∨ to 2.0∨
Output Timing Reference Level	0.8∨ to 2.0∨

Programming Waveforms 1,3,4

Notes

- 1. The Input Timing Reference Level is 0.8V for V_{tt} and 2.0V for $V_{t\phi}$ 2. t_{tt} and t_{tt} are characteristics of the device but must be accommodated by the programmer.
- 3. The proper page to be programmed must be selected by a page select write operation prior to programming the 270513 or 270515.
- 4. When programming a 27C512/513/515 a $0.1_{
 m uf}$ high frequency bypass capacitor is required across $V_{
 m re}$ and ground to suppress noise transients which may prevent proper programming of the part.

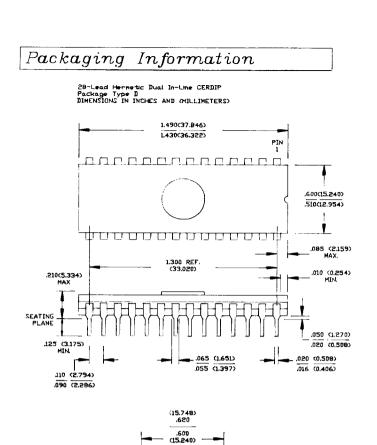

Fast Programming Algorithm

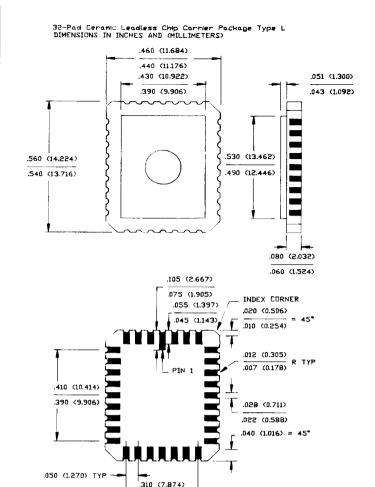
Two $\overline{\text{CE}}$ pulse widths are used to program; initial and overprogram. At are set to address the desired byte. V_∞ is raised to 6.0V and $\overline{\text{OE}}/V_{\text{Pl}}$ is raised to 12.5V. The first $\overline{\text{CE}}$ pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram $\overline{\text{CE}}$ pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max.)

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm cc}$ and $\overline{\rm OE}/V_{\rm rr}^{-1}$ are lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

Notes:

1. V_{∞} must be applied simultaneously or before \overline{OE}/V_{pr} and removed simultaneously or after \overline{OE}/V_{pr}

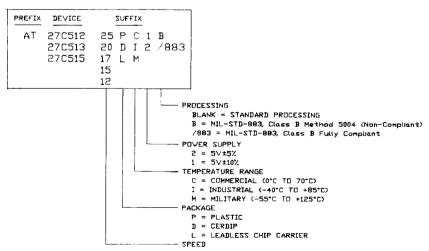



ATMEL's 27C512, AT27C513, and AT27C515 Integrated Product Identification Code

Pins	5 A 0	П7	06	П5	□4	<u>3</u>	02	□1	00	Hex
Codes	(10)	(19)	(18)	(17)	(16)	(15)	(13)	(12)	(11)	Data
Mfg.	0	0	0	0	1	1	1	1	1	1F
Device Ty	/pe									
AT27C512	1	0	0	0	0	1	1	0	1	OD
AT27C513	1	0	0	0	0	1	1	1	0	0E
AT27C515	1	1	0	0	0	1	1	1	1	8F

Erasure Characteristics

The entire memory array of the AT27C512, AT27C513, or AT27C515 is erased (all outputs read as V_{om}) after exposure to ultraviolet light at a wavelength of 2537A. Complete erasure is assured after a minimum of 20 minutes exposure using $12,000\text{\ uW/cm}^z$ intensity lamps spaced one inch away from the AT27C512, AT27C513, or AT27C515. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W*sec/cm^z . To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.



.290 (7.366)

Ordering Information

,700 MAX, (17.7**9**0)

EPROME + EEPROME - EXAMPLE: 27CS15-15DM1B

GATHEL CORPORATION 1997

ATMEL Corporation assumes no responsibility for the use of any circuitry other than circuitry emboded in an ATMEL Corporation product.

No other circuit patent Ucenses are implied.

ATMEL Corporation's products are not authorized for use as critical components in life support devices or systems.

2095 Ringwood Ave., San Jose, CA 95131 (408) 434-9201

February 1987 ORDER NO. AT27C512 - 0002