
MSCP Basic Disk Functions Manual
AA-L619A-TK Version 1.2

A part of UDA50 Programmer's
Doc. Kit
QP-905-GZ

First Edition

April, 1982

Copyright (c) 1982, Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or in whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Bedford, Massachusetts, 01730.

Digital Equipmemt Corporation makes no representation that the
interconnection of its products in a manner described herein will
not infringe existing or future patent rights, nor do the
descriptions contained herein imply the granting of licenses to
make, use, or sell equipment or software constructed or drafted
in accordance with the description.

The information in this document is for informational purposes
only and is subject to change without notice by Digital Equipment
Corporation.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this document.

The major trademarks of Digital Equipment Corporation are:

DEC
DEC US
DECMATE
DECnet
PDP
UNIB US
VAX

VT
DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
EduSystem

and the Digital logo:

lAS
MASSB US
WORKPROCESSOR
RSTS
RSX
VMS

I I I I I I I I
Idlilgliltlalll
I I I I I I I I

Table of contents Page 1

CHAPTER 1

1. 1
1.2
1.3
1.4

CHAPTER 2

CHAPTER 3

3.1
3.2
3.3
3.4

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

CHAPTER 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

CHAPTER 6

6.1

INTRODUCTION

Overview of MSCP Subsystem • • • • . • • •• • 1-1
Purpose •••• • • •• ••• • • • • 1-3
Method of Presentation • • •• •••••••• 1-3
Scope 1- 3

TERMINOLOGY

CLASS DRIVER / MSCP SERVER COMMUNICATIONS

Connection • • • • • • • •
Flow Control • • • • • • •
Class Driver Responsibilities
MSCP Server Responsibilities •

ALGORITHMS AND USAGE RULES

• 3-1
3-2

• 3-5
• 3-6

Controller States •••• • • • • • • • • 4-1
Controls and Indicators • • • • • • • • • 4-4
Unit States ••.••• .•.••..•.•• 4-5
Unit Numbers. • • • • • • • • • • • • • • • •• 4-12
Command Catagories and Execution Order • 4-15
Class Driver / MSCP Server Synchronization. 4-17
Class Driver Error Recov~ry • • • • • • • • • • 4-18
This section deliberately omitted.. •••• 4-19
Host Access Timeouts • • • • • • • • • • • • •• 4-19
Command Timeouts • • • •• ••••••••• 4-22
Disk Geometry and Format • • • • • • • • • • •• 4-25
Bad Block Replacement •••• • • • 4-30
Write Protection • • • • • • • • • • • • • • 4-31
Compare Operations • • • • ••• •• •• 4-32
Multi-Unit Drives and Formatters. • • • • • •• 4-34
Controller and Unit Identifiers 4-36
Media Type Identifiers • • • •• •••••• 4-37

MSCP CONTROL MESSAGE FORMATS

Generic Control Message Format • • •••••• 5~1
Reserved and Undefined Fields • • • • • • • • • • 5-3
Transfer Command Message Format •••••• • 5-5
Command Modifiers •••• •••••••••• 5-7
End Message Format • •••••••••• • 5-9
Status Codes •• .•••••• .•• 5-12
Unit Flags. • • • • • • • • • • • • •• 5-17
Controller Flags • • • • 5-18

MINIMAL DISK MSCP SUBSET

This section deliberately omitted •••••••• 6-1

Table of contents Page 2

6.2
6.3
6.4
6.S
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.lS
6.16
6.17
6.18
6.19
6.20
6.21
6.22

CHAPTER 7

CHAPTER 8

8.1
8.2
8.3
8.4
8.S
8.6

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

This section deliberately omitted
ABORT Command •••••••••••••
ACCESS Command • • • • • • • • • •
AVAILABLE Command •••••••••

.
This section deliberately omitted ••••••.
COMPARE HOST DATA Command •••••••
DETERMINE ACCESS PATHS Command • • • • • • • • •
ERASE Command •••••••••••••
This section deliberately omitted •••••••
GET COMMAND STATUS Command • • • • • • •
GET UNIT STATUS Command ••••••••••• •
ONLINE Command • • • • • • • • • • •
READ Command • • • • • • • • • • • •
REPLACE Command •••••••••• . .
SET CONTROLLER CHARACTERISTICS Command • • •
SET UNIT CHARACTERISTICS Command • • • •

. .

WRITE Command •••••••• • • • • • • •
Invalid Command End Message • • • •
ACCESS PATH Attention Message ••••• • • • •
AVAILABLE Attention Message • • • • • •
DUPLICATE UNIT NUMBER Attention Message

DISK MSCP OPTIONS

MSCP ERROR LOG MESSAGE FORMATS

• 6-2
6-3

• 6~S
• 6-7
6-10
6-11
6-13
6-15
6-17
6-18
6-21
6-26
6-32
6-34
6-36
6-39
6-44
6-46
6-47
6-48
6-51

Introduction • • • • • • • • • • • • • • ••• 8-1
Gene ric E r ro r Log Message Fo rmat • • • • • • • 8- 4
Controller Errors •••••••••••••••• 8-8
Host Memory Access Errors with Bus Address • • 8-9
Disk Transfer Errors • • • • • • • • • • •• 8-10
SDI Errors • • • • • • • • • • •• • • • •• 8-12

OPCODE, FLAG, AND OFFSET DEFINITIONS

STATUS AND EVENT CODE DEFINITIONS

CONTROLLER, UNIT, AND MEDIA TYPE IDENTIFER VALUES

BUFFER DESCRIPTOR FORMATS

CHAPTER 1

INTRODUCTION

1.1 Overview of MSCP Subsystem

Mass Storage Control Protocol (MSCP) is the protocol used by a
family of mass storage controllers and devices designed and built
by Digital Equipment Corporation. In a system that uses an MSCP
storage subsystem, the controller contains intelligence to
perform the detailed I/O handling tasks. This arrangement allows
the host to simply send command messages (requests for reads or
writes) to the controller and receive response messages back from
the controller. The host does not concern itself with details
such as device type, media geometry, media format, error
recovery, etc.

The host uses two levels of software to accomplish its tasks.
The higher level is called a "class driver". The class driver's
knowledge of devices is limited to the device class (such as
disks) and their capacity. The class driver does not have to
know the detailed nature of the communications link (I/O bus),
controller, or devices that are being used.

The second level of host software is called a "port driver". The
port driver passes messages to/from the communications link or
bus. It is not aware of the messages' meaning. The port driver
does have to know the exact nature of the communications link or
bus (communications mechanism).

In the controller architecture, there are also two levels of
software. The lower of these two is also a "port driver" and,
like the port driver in the host, is concerned only with passing
messages on and off of the bus. The higher level of controller
software is the "MSCP Server". It constitutes the intelligence
of the controller and therefore defines the functionality of the
controller.

The MSCP server concerns itself with determining the number of
devices, their type, geometry, unit number, availability, status,
etc. The MSCP server receives requests from the host and sends
responses to the host. It optimizes the requests, performs the
operations, transfers the data to/from the host, transfers the
data to/from the device, and buffers the data as necessary. The

Introduction Page 1-2
1.1 Overview of MSCP Subsystem

MSCP server performs error detection and recovery, and reports
any significant errors to the host.

Because the MSCP server handles the error detection and recovery
by itself, the host sees a "perfect media", an important
characteristic of an MSCP subsystem. That is, the host need only
report errors to higher level (user) software, as the MSCP server
performs all error recovery and media defect (bad block)
hand ling.

The host's class driver and the controller's MSCP server route
their messages through the path of the two port drivers and a
hardware interconnect. This is their physical connection.
However, their logical communication is a direct connection
because the port driver details are below their level of concern.
Therefore, there are two paths to consider, a physical message
path and a logical MSCP connection. This is illustrated in
Figure 1.

+
1

Host Mass Storage Controller
- - - - - - + + - - - - - - - - +

+-----------+
1 Class I

I Driver I
+-----------+

A
I
V

+-----------+
1 Port I
1 Drive r I

+-----------+
A

I I I

I MSCP I
<------------------)

I I

+-----------+
I MSCP I
I Server 1

+-----------+
A
1
V

I Communications I +-----------+
<------------------) I Por t I

1 Protocols I I Driver I

+-----------+
A

+ - - - -1- - - - +
1

+ - - - -1- - - - +
I

V V

+--+
1 Port I 1 Port 1
I + + 1

1 Communications Mechanism 1

I 1
+--+

Figure I Example System

In summary, an MSCP subsystem is characterized by an intelligent
controller that provides the host with the view of perfect media.
It is further characterized by host independence from a specific
bus, controller, or device type.

Introduction
1.2 Purpose

1.2 Purpose

Page 1-3

The purpose of this manual is to provide information on the rules
of MSCP to the detail necessary for writing a host class driver.

1.3 Method of Presentation

The method of presentation used in this manual is:

o to define new terms and concepts.

o list the responsibilities of the class driver.

o list the responsibilities of the MSCP server that are
applicable to the class driver.

o list the responsibilities of the storage unit that are
applicable to the class driver.

o explain each command and response message.

o explain each error message.

o provide appropriate tables of consolidated information.

1.4 Scope

The scope of this manual is limited to the details of the MSCP
itself and does not provide information on any specific type of
host processor or any specific operating system. It does not
assume any particular bus, controller, device type, host, or port
driver implementation.

CHAPTER 2

TERMINOLOGY

Command Categories

All MSCP commands fall into one of four command categories:
Immediate commands, Non-Sequential commands, Sequential
commands, and Special commands. Each command category has
certain constraints on when those commands may be executed,
thus limiting the scope of controller optimizations. See
Section "Command Catagories and Execution Order".

Controller Timeout Interval

A time interval, measured in seconds, supplied by the
controller or MSCP server in the SET CONTROLLER
CHARACTERISTICS command's end message. Controllers or MSCP
servers guarantee that they will complete all Immediate
commands plus some measurable amount of useful work on their
oldest outstanding non-Immediate command within the
controller timeout interval. See Section "Command Timeouts".

Forced Error

A data error (in a disk block) that has been deliberately
caused by use of the "Force Error" command modifier. Used to
indicate that the data in the block is of questionable
validity. For example, an unrecoverable error occurred when
the data was copied from some other block.

Forced Error Indicator

The logical flag, present in each disk block, used to record
the presence of a Forced Error. Depending upon the detailed,
low level format of the disk device, this may be implemented
either as an actual bit flag or as a special pattern (such as
the complement of the normal value) of error correcting
and/or error detecting codes.

Terminology Page 2-2

Immediate Commands

Commands that MSCP servers should execute immediately,
without waiting for any other commands to complete.
Immediate commands are typically status inquiries, and must
be completed within the controller timeout interval.

Non-Sequential Commands

Commands whose execution order MSCP servers may rearrange, in
order to optimize performance. The optimization may not move
a non-sequential command past the barrier imposed by a
sequential command.

Nugatory

Of little or no consequence: Trifling, Inconsequential. See
Section "AVAILABLE Command"

Sequential Commands

Commands that MSCP servers must execute in the exact order
that they were received from class drivers. Sequential
commands typically change a unit's state or context.

Special Commands

Commands that have both the execution order constraints of
non-sequential commands plus certain special, command
dependent execution order constraints.

CHAPTER 3

CLASS DRIVER / MSCP SERVER COMMUNICATIONS

3.1 Connection

Host class drivers use the host port driver to communicate with
MSCP servers in controllers. MSCP servers similarly use the
controller port driver to communicate with class drivers in
hosts. This communication takes place across a link called a
connection.

The state of the connection is directly equivalent to the state
of the controller or MSCP server with respect to the class
driver. The controller is "Controller-Online" if and only if the
connection is established and functioning. The controller is
"Controller-Available" if the connection is not established, but
it is believed that it could be established. The controller is
"Controller-Offline" if the connections is not established and it
is believed that it cannot be established.

Three types of communications services are used across the
connection between a class driver and an MSCP server:

o A sequential message communications
MSCP control messages. This
sequential, duplicate free delivery
sent across the same connection.
support messages of at least 48 bytes

service, used for
service guarantees

for all messages
This service must

in length.

o A datagram communication service, used for MSCP error
log messages. This service must deliver messages sent
on it with very high probability; messages may be
delivered out of sequence, lost, or duplicated, but the
probability of any of these occurring must be very low.
This service must support messages of at least 384 bytes
in length.

o A block data communication service, used to move data
between hosts and mass storage controllers. This
service provides a reliable, efficient method of
transferring the contents of a named buffer in one
subsystem to a named buffer in another subsystem.
Buffers are identified by buffer descriptors, which

Class Driver / MSCP Server Communications
3.1 Connection

Page 3-2

identify both the buffer and the subsystem (host) in
which the buffer resides.

The communications mechanism or port drivers discard all messages
that, at the time a connection is terminated, have been sent or
queued to be sent via the sequential message and datagram
services but have not yet been delivered. Block data transfers
mayor may not be aborted when a connection is terminated; if
aborted, they may have already been partially completed. Block
data transfers from a previous incarnation of a connection are
guaranteed to be aborted when the connection is re-established.

Besides using these three communications services directly, MSCP
uses the establishment of the connection itself to synchronize
class drivers and MSCP servers. Either the class driver or the
MSCP server will terminate the connection between them (become
"Controller-Available") if it determines that they must
re-synchronize with each other. Events that require class driver
/ MSCP server re-synchronization include certain errors or loss
of context by either process. The connection is also terminated,
by a port driver, if an unrecoverable communications error
occurs. Termination of the connection signals the processes that
re-synchronization is necessary; the re-synchronization is
accomplished by each process discarding all context regarding
outstanding commands or transactions, after which a new
connection is established.

Following re-synchronization, commands which were outstanding
before the re-synchronization was performed may have completed to
an indeterminate extent. Such commands may have never been
started, may have been partially completed, or may have been
fully completed. The only guarantee is that they are no longer
outstanding, implying that the controller is no longer performing
work for them and that the class driver will not receive an end
message for them. The fact that the controller is no longer
performing work for them implies that no state· changes or
modification of data will take place as a result of such
commands.

3.2 Flow Control

Especially critical to MSCP is the concept of flow control and
the flow control based requirements that MSCP imposes on class
drivers and MSCP servers. These items are discussed below.

Flow control arises from the need to avoid the congestion and/or
deadlock which can occur if one process sends messages too
quickly to another process. The receiving process must have
buffers in which to place the incoming messages; when all such
buffers are full, additional messages cannot be handled.

Class Driver / MSCP Server Communications
3.2 Flow Control

Page 3-3

The datagram communications service does not use flow control.
If no buffers are available, incoming datagrams will be
discarded. Thus the characteristic that the datagram service
does not guarantee delivery, instead only assuring a high
probability of delivery. This high probability 1S dependent upon
the receiver (i.e., the class driver) always having buffers
queued for incoming datagrams.

The sequential message communications service does use flow
control. When a potential receiving process queues a buffer for
receiving messages on a connection, the presence of this buffer
is communicated (via the underlying communications service) to
the potential sending process at the other end of the connection.
This message notifying the potential sending process of the
queued buffer grants the sending process a credit, which is the
priviledge to send a message. Therefore messages will only be
sent when the sending process knows that the receiving process
has queued a buffer into which the message can be received,
ensuring that the receiving process will be able to handle the
message.

A typical implementation of flow control will be somewhat as
follows. The port driver maintains a counter on behalf of each
process participating in a connection. That counter holds the
process's current credit balance -- i.e., the number of receive
buffers that its partner has queued less the number of messages
that it has sent. Every time the process's partner queues a
receive buffer, a message is sent causing the counter to be
incremented. Every time the process sends a message, the counter
is decremented. Messages may only be sent when the counter
(credit balance) is greater than zero, thus guaranteeing that the
counter will never be negative. Indeed, we will see later that
some messages require that the counter be greater than a
threshhold larger than zero.

Due to the inherent asynchrony of communications between multiple
processes or subsystems, revoking or canceling a previously
queued receive buffer is not straightforward. The problem is
that the buffer cannot be revoked and returned to the receiving
process until after the sending process has acknowledged its
revocation, as otherwise the sending process may attempt to send
a message that requires the revoked buffer. Therefore the
algorithm for revoking receive buffers is as follows:

1. The revoking process (the process which originally
queued the receive buffers) requests that some number of
buffers be revoked.

2. The revocation request is communicated to the revoking
process's partner (actually to its port driver).

Class Driver / MSCP Server Communications
3.2 Flow Control

page 3-4

3. The revoking process's partner (actually its port
driver) compares the number of buffers to be revoked
against its current credit balance and a threshhold. If
the requested number of buffers / credits can be revoked
(i.e., subtracted from the credit balance) without
lowering the credit balance below the threshhold, then
all of them will be revoked. Otherwise, if the credit
balance is above the threshhold, it is set to the
threshhold and the difference between its former value
and the threshhold is the number of buffers / credits
actually revoked. If the credit balance is already at
or below the threshhold, then it stays the same and no
buffers / credits are revoked.

4. The actual number of buffers / credits revoked is
communicated back to the revoking process's port driver.

5. The revoking process's port driver returns the buffers
actually revoked to the revoking process.

If a threshhold of zero is used, the revoking or receiving
process can always get back all of its buffers. The fact that an
attempted revocation failed implies that the buffers have already
been returned to the process, since messages have been received
into them.

The above algorithm uses a threshhold to prevent revocation below
some lower limit. The mechanism by which this threshhold is
obtained is not critical to either MSCP or to the above
algorithm. The rules below are phrased as if the threshhold were
supplied by the revoking process as part of the revocation
request. This is purely to simplify the wording of those rules;
often the threshholds will be constants determined when a
connection is established. In such an implementation a
threshhold of zero should be used when the class driver is
revoking credits it has granted to the MSCP server and a
threshhold of one should be used when the MSCP server is revoking
credits it has granted to the class driver.

MSCP is only concerned with credits required by the sequenced
message service. Some communications services may require
credits for the block data communication service as well. Any
such credits are invisible to MSCP, being communications service
dependent, and must be provided in addition to the credits
required by the rules below.

Note that the above discussion merely describes a conceptual
model for flow control within the sequential message
communications service. There is no requirement that flow
control actually be implemented this way, provided that the
results are the same. For example, almost all implementations
wi]l carry credit information in a header added to messages and
processed by the receiving process'sport driver, rather than
communicating credits with separate messages. Some extremely

Class Driver / MSCP Server Communications
3.2 Flow Control

Page 3-5

well behaved communications mechanisms may not need to implement
explicit flow control at all, since the underlying communications
mechanism may provide it implicitly.

3.3 Class Driver Responsibilities

Given the above model for flow control,
requirements MSCP places on class drivers
Class drivers must obey the following rules:

we can state the
and MSCP servers.

1. All MSCP commands fall into one of several categories;
for this discussion we distinguish between Immediate
commands (one specific command category) and
non-Immediate commands (the union of all other command
categories). When the class driver's credit balance is
zero, the class driver may not issue any commands. When
it is one, the class driver may only issue Immediate
commands. When it is two or larger, the class driver
may issue both Immediate and non-Immediate commands. If
the class driver's credit balance is one and there is a
GET COMMAND STATUS command waiting to be issued for the
command timeout algorithm, then the class driver must
issue that GET COMMAND STATUS command as the next
command.

In essence, this rule means that the class driver must
reserve one credit for the exclusive use of the command
timeout algorithm. This credit may be "borrowed" for
issueing Immediate commands, since such command always
complete quickly. The goal is to guarantee that the
command timeout algorithm will always be able to
promptly issue a GET COMMAND STATUS command.

2. The class driver must queue a receive buffer for each
command that it sends to an MSCP server. The receive
buffer will be used to hold the command's end message.
The receive buffer must be queued either before the
command is sent or as part of an atomic (indivisible)
action that includes sendipg the command. The important
point is that the MSCP server must receive the credit
for the receive buffer either before or concurrently
with receiving the command.

3. In addition to queueing receive buffers for end
messages, class drivers that enable attention messages
must queue at least one receive buffer in which to
receive attention messages. Such a receive buffer must
be queued before the class driver enables attention
messages i.e., before the class driver sends a SET
CONTROLLER CHARACTERISTICS command that enables
attention messages. Additional receive buffers may be
queued at any time.

Class Driver / MSCP Server Communications
3.3 Class Driver Responsibilities

Page 3-6

4. Upon receiving an attention message, the class driver
must immediately queue another (or the same) receive
buffer back for more attention messages. The only
resource that the class driver may require between
receiving an attention message and queueing another
receive buffer is host CPU cycles; the class driver may
not require that it be able to send or receive any other
messages or wait for any I/O to complete before queueing
another receive buffer. This effectively requires that
all code and data structures needed to process attention
messages must be permanently resident in physical
memory, so that an incoming attention message can be
immediately processed and the buffer in which it was
received immediately re-queued.

5. With one exception, the class driver must never revoke
receive buffers. The one exception is after disabling
attention messages -- i.e., after receiving the end
message for the SET CONTROLLER CHARACTERISTICS command
that disabled attention messages. At that time the
class driver may revoke as many buffers as it has queued
for attention messages (i.e., total number of buffers
queued less number of outstanding commands). This
revocation should specify a threshhold of zero. Note
that this revocation is guaranteed to succeed if the
MSCP server is operating correctly.

Failure of a class driver to follow the above rules may lead to
controller deadlock, command timeouts, or the controller not
obeying its rules given below. Any connection or process in the
controller's subsystem may be affected, rather than just the MSCP
server with which the class driver is communicating. Note that
class drivers that enable error logging must also keep datagram
buffers queued so that they can receive error log messages. Not
keeping datagram buffers queued may result in loss of error log
messages.

3.4 MSCP Server Responsibilities

The rules for MSCP servers vary depending upon certain
characteristics of the server. There is one general set of
rules, plus a simplification that certain classes of servers may
follow. In all cases, an MSCP server's implementation of these
rules may require, for its correct operation (and thus adherence
to these rules), that class drivers correctly follow the rules
given for them above. The general set of rules, which must be
followed by all MSCP servers that aren't in any of the special
cases identified later, are as follows:

Class Driver / MSCP Server Communications
3.4 MSCP Server Responsibilities

Page 3-7

1. So long as it is "Controller-Online" to a class driver,
an MSCP server must ensure that the sum of the number of
commands that are outstanding from that class driver
plus the number of unused receive buffers / credits that
it has granted to that class driver is never lower than
the values given below. That is, the sum of the actual
and potential outstanding commands must be at least the
values below. Between the time that the controller
becomes "Controller-Online" and the completion of the
first SET CONTROLLER CHARACTERISTICS command, this sum
must be at least one. Following the completion of the
first SET CONTROLLER CHARACTERISTICS command, and so
long as the controller remains "Controller-Online", this
sum must be at least two. The first unit of this sum
allows the class driver to issue Immediate commands;
any excess, beyond the value one, can be used to issue
"real" commands such as data transfers. Note that these
requirements imply that, following a SET CONTROLLER
CHARACTERISTICS command, the MSCP server must either
grant a minimum of two receive buffers / credits to the
class driver or else terminate the connection (become
"Controller-Available") with the class driver.

2. So long as it is "Controller-Online" to a class driver,
an MSCP server must ensure that the sum of the number of
immediate commands that are outstanding from that class
driver plus the number of unused receive buffers /
credits that it has granted to that class driver is
always at least one. That is, the sum of the actual and
potential outstanding Immediate commands must be at
least one. This is in addition to requirement I above.

3. An MSCP server may revoke receive buffers or credits at
any time so long as it continues to meet requirements I
and 2 above. Note that, in order to meet requirement 2,
the sum of the threshhold used for the revoke request
plus the number of outstanding Immediate commands (from
that class driver) must be at least one. This
restriction will typically be met by always using a
threshhold of one.

4. An MSCP server must keep track of the excess, if any, of
its credit balance over the number of outstanding
commands. The server may only issue attention messages
when this excess is greater than zero. Attention
messages that cannot be issued immediately should be
saved until credits are available with which to issue
them. The controller must continue to accept new
commands, process outstanding commands, and issue end
messages for completed commands while attention messages
are being saved. If the conditions that triggered the
generation of an attention message disappear before that
attention message can be issued (sent), then the
attention message mayor may not still have to be sent;

Class Driver / MSCP Server Communications
3.4 MSCP Server Responsibilities

Page 3-8

see the individual attention message descriptions.

End messages for all types of commands should be issued
as soon as the command completes. Note that the rules
for class drivers ensure that the MSCP server always has
sufficient credits with which to issue end messages, so
the MSCP server need not check its credit balance before
issuing end messages.

MSCP servers that limit the rate at which they generate attention
messages can replace rule 4 above with a simpler rule. This
alternate rule may be used, at the server's option, by any MSCP
server that will generate no more than an average of two
attention messages per second, averaged over the controller
timeout interval (see Section "Command Timeouts"). That is, if
the controller timeout interval is N seconds, then the server
will generate no more than N*2 attention messages within any N
second period. The MSCP server may assume, in determining its
maximum attention message rate, that human operators do not
engage in pathological activity. That is, it may assume that
cases such as an operator continuously actuating the Run/Stop
switches on one or more drives will never occur. Any MSCP server
that can meet this attention message rate restriction can·
substitute the following alternate rule for rule 4 above:

4'. An MSCP server may issue attention messages and end
messages whenever its credit balance is greater than
zero. Attention messages and end messages that cannot
be issued immediately should be saved until credits are
available with which to issue them. If the conditions
that triggered the generation of an attention message
disappear before the attention message can be issued
(sent), then that attention message mayor may not still
have to be sent; see the individual attention message
descriptions. Saved end messages must always be sent,
unless the MSCP server first becomes
"Controller-Available" (i.e., terminates its connections
with the class driver), in which case the saved end
messages must not be sent. Note that end messages must
always be sent in the order that their corresponding
commands completed.

An MSCP server may deadlock or cease operating on a
connection whenever it has saved attention messages or
end messages waiting to be issued on that connection.
The only operations that it must perform when it has
such messages waiting is to accept incoming credit
notifications, send the waiting messages when credits
become available, and resume normal operation when all
waiting messages have been sent. Note that accepting
incoming credit notifications will often require that
the MSCP server also accept new commands, although it
need not begin processing of those new commands until

Class Driver / MSCP Server Communications
3.4 MSCP Server Responsibilities

Page 3-9

all waiting messages have been sent. Note also that
only the one MSCP server may deadlock or cease
operating; other processes (i.e., other MSCP servers)
in the same subsystem or controller and other
connections to the same MSCP server must not be
affected.

CHAPTER 4

ALGORITHMS AND USAGE RULES

4.1 Controller States

The controller may be in any of three states relative to a host
class driver. The controller may be in a different state
relative to each host or each class driver. The controller
states are:

Controller-Offline

A controller is "Controller-Offline" to a class driver
whenever it is not available to that class driver and cannot
perform any operations on its behalf. Possible causes
include inoperative hardware or an operator disabling the
controller. A controller is "Controller-Offline" exactly
when it is not possible to establish a connection between the
class driver and the MSCP server within the controller. Note
that a controller may be "Controller-Offline" to some of a
host's class drivers yet be "Controller-Available" or
"Controller-Online" to others.

Controller-Available

A controller is "Controller-Available" to a class driver
whenever it could perform operations for that class driver
but the driver has not yet synchronized with the controller.
A controller is "Controller-Available" exactly when it would
be possible to establish a connection between the class
driver and the MSCP server within the ~ontroller, but no
connection has yet been established.

Controller-Online

A controller is "Controller-Online" to a class driver
whenever it can both perform operations for that class driver
and the driver has synchronized with the controller. A
controller is "Controller-OnlineOR" exactly when a connection
exists between the class driver and the MSCP server within
the controller. This is the state used for normal operation.

Algorithms and Usage Rules
4.1 Controller States

Page 4-2

Strictly speaking, the term "controller state" is a misnomer.
The states described above actually exist between an individual
class driver and an individual MSCP server. A host may have
several class drivers and a controller subsystem may have several
MSCP servers. Note also that the controller state (MSCP server
state?) is distinct from the state of any units connected to the
controller.

An MSCP server (controller) enters the "Controller-Offline" state
relative to a host whenever the MSCP server ceases to function or
otherwise becomes unable to perform operations for the host.
Possible causes include:

1. Controller hardware, software, or power failure.

2. Controller
spontaneous.

initialization, either requested or

3. An operator (typically Field Service) disables all or
part of the controller.

4. Communications mechanism failures.

5. The controller has not been built yet, the controller is
still in its shipping crate, or it has otherwise not yet
been installed.

An MSCP server enters the "Controller-Available" state relative
to a host class driver when:

1. The controller or MSCP server is "Controller-Offline",
and all causes of it being "Controller-Offline" are
removed.

2. The MSCP server is "Controller-Online", and the MSCP
server cannot successfully send a control message (i.e.,
an MSCP end or attention message) to the host class
driver.

3. The MSCP server is
access timeout
Timeouts").

"Controller-Online",
expires (see Section

and the host
"Host Access

4. The MSCP server is nController-Online", and the MSCP
server receives an invalid command from the host. Note
that this transition to nController-Available" is
optional, and therefore controller dependent.

5. The host class driver terminates the connection between
the class driver and the MSCP server.

Algorithms and Usage Rules
4.1 Controller States

Page 4-3

6. A port driver or the communications mechanism terminates
the connection between the class driver and the MSCP
server, generally due to a communications error.

The port driver should inform the class driver whenever the MSCP
server enters the "Controller-Available" state. How the port
driver obtains this information is communications mechanism
dependent. Note that the notification that the controller has
become "Controller-Available" is not necessarily prompt. In
particular, with some communications mechanisms the notification
may not occur until the next time the class driver issues a
command to the controller. Furthermore, the port driver need not
notify the class driver at all if a compound (multiple) error is
associated with the MSCP server becoming "Controller-Available".
In such a case the class driver will ultimately become aware of
the state change when its Command Timeout expires.

Since no connection exists to an MSCP server that is
"Controller-Offline" or "Controller-Available", the
communications mechanism will either reject or discard any
messages (commands) that a class driver attempts to send to it.
An MSCP server that becomes "Controller-Offline" or
"Controller-Available" may either abort commands in progress or
else continue processing the commands that it has already
received. However, if a Sequential command from a given
connection is aborted, then all subsequently received
non-Immediate commands from the same connection must also be
aborted (i.e., must never begin processing).

Typically, the MSCP server will continue processing outstanding
commands until it "notices" that the connection to the class
driver has been terminated, at which point it will abort any
commands still outstanding. Note that the MSCP server must
guarantee that all outstanding commands have either been
completed or aborted i.e., that there are no outstanding
commands before it completes a transition from
"Controller-Available" to "Controller-Online".

The MSCP server enters the "Controller-Online" state relative to
a host class driver upon successful synchronization with the
class driver. The class driver synchronizes with the MSCP server
by establishing a connection with the MSCP server. Note that the
MSCP server must guarantee that there are no outstanding commands
"leftover" from a previous incarnation of the connection before
it allows the new incarnation of the connection to be established
and enters the "Controller-Online" state.

Algor i thms and Usage Rules
4.2 Controls and Indicators

4.2 Controls and Indicators

Page 4-4

All storage units used with MSCP must have the following controls
and indicators:

0 Uni t number select mechanism.

0 Unit number display mechanism.

0 Run/Stop switch.

0 Write Protect switch or mechanism.

0 Write Protect Status indicator.

The unit number select mechanism on an MSCP storage unit must be
capable of specifying any unit number in the range 0 through 251
inclusive. The unit number select mechanism must operate without
host intervention and must preserve unit numbers across power
failures and other losses of context.

Alteration of the unit number must be possible in the field.
That is, the unit number must be alterable by Field Service, both
when a device is first installed and subsequently when a system
is reconfigured. The preferred unit select mechanism is a
removable unit number plug, allowing the unit number to be
altered by users as well as by Field Service. Alternatives to
unit number plugs, however, are acceptable so long as they can be
altered by Field Service and they provide the full 0 through 251
unit number range.

A single unit number select mechanism may be shared by the units
of a mUlti-unit drive. Units that share a unit number select
mechanism always have consecutive unit numbers. If exactly two
units share a unit number select mechanism, it is acceptable for
the first unit to always have an even unit number and the last
unit to always have an odd unit number. If exactly N units share
a unit number select mechanism, it is acceptable for the first
unit's unit number to always be a multiple of N, the next unit's
unit number to always be a multiple of N plus 1, etc.

The unit number display mechanism on an MSCP storage unit must
display the unit number(s) specified by the unit number select
mechanism. The display must be visible to normal (non-field
service) human operators. If the unit number select mechanism is
a removable unit plug, then the unit number display mechanism is
merely a number printed on the plug. If several units share a
unit number select mechanism, then they may also share a unit
number display mechanism.

Algo r i thms and Usage Rules
4.2 Controls and Indicators

Page 4-5

The Run/Stop switch must be alterable by normal (non-field
service) human operators to allow or disallow host access to the
unites). When in the Run position, this switch indicates that
hosts should be allowed to access the unit(s). When in the Stop
position, this switch indicates that hosts should not be allowed
to access the unit(s), and that, if the unit(s) have removable
media, human operators should be allowed to remove the units'
media (i.e., that the unit should be spun-down). A single
Run/Stop switch may be shared by any units of a multi-unit drive
that share a spindle (i.e., that must be spun-up and spun-down
together).

The write protect switch or mechanism must either be an operator
accessible switch or else some kind of mechanical deformation of
the media, such as a tape write-ring or the write-lockout tab on
a cassette. In either case, it must be alterable by normal
(non-field service) human operators. A separate write protect
switch or mechanism must be provided for each unit of a
multi-unit drive. When actuated, the write protect switch or
mechanism prevents write access to the unit by hosts and
controllers. In the case of a write protect switch, the
transition to the write protected state must be "smooth" rather
than immediate; see Section "Write Protection".

The write protect status display mechanism must display the write
protect status of the unit. A separate write protect status
display mechanism must be provided for each unit of a multi-unit
drive. The write protect status display must be user visible
while a volume is mounted in the unit. That is, the user must
not be required to remove the volume from the unit to determine
whether or not it is write protected.

The preferred write protect status display mechanism is a light,
located within the write protect switch, that is on whenever the
unit is write protected. The light must be lit regardless of the
reason for the unit being write protected -- i.e., it must be lit
when the unit is Software Write Protected (see Section "Write
Protection"), as well as when the unit is Hardware Write
Protected due to its write protect mechanism being activated.

4 • 3 Un itS tat e s

Each unit may be in one of three states relative to each class
driver that is "Controller-Online" to an MSCP server. (Actually,
it is really each unit number that these states apply to, rather
than to a unit proper). Each unit may be in a different state
relative to each "Controller-Online" class driver. The unit
states are:

Un i t - 0 f f 1 i n e

A unit is "Unit-Offline" whenever it is unable to satisfy

Algorithms and Usage Rules
4.3 Unit States

Pag e 4-6

normal host requests. Except for status queries, MSCP
commands addressed to a unit that is "Unit-Offline" will be
rejected. Furthermore, some device characteristics may not
be available to status queries.

Un i t-Avai lable

A uni t is "Un i t-Avai lable" whenever it would be able to
satisfy normal host requests, except that the host has not
yet issued an ONLINE command to bring the unit "Unit-Online".

Un i t - On 1 in e

A unit is "Unit-Online" whenever it is able to satisfy normal
host requests and the host has issued a successfull ONLINE
command.

A unit's state is meaningless with respect to a class driver that
is not "Controller-Online" to the MSCP server or when no class
driver is "Controller-Online" to the MSCP server.

The "Unit-Offline" state has six sub-states, related to the exact
reason for the unit being "Unit-Offline". These substates are:

1. Uni t inoperative. Some fatal error condi tion in the
drive prevents the unit from becoming "Unit-Available"
or" Un i t - On lin e" •

2. Uni t disabled. Field Service or a diagnostic has
decided that continued operation of the unit's drive
will lead to progressive deterioration and eventual
destruction of some portion of the drive or media. The
unit has been disabled to prevent its use, and
consequent destruction, until Field Service can repair
the problem. This cause of the unit being
"Unit-Offline" can be overridden, and the unit brought
"Unit-Online", by use of the "Allow Self Destruction"
modifier to th~ ONLINE command. Note that some devices
may have no way of detecting progressive deterioration,
and consequently will never enter this sub-state.

3. Unit known. The controller knows that the specified
unit (i.e., a unit with the specified unit number)
exists, but the unit is "Unit-Offline" for some normal
(non-error) condition. Typical causes of this sub-state
include the unit's Run/Stop or Load/Unload switch being
in the Stop or Unload position or no volume being
mounted in the unit.

4. Online to another controller. The specified unit exists
and would be "Unit-Available", except that it or some
other unit with which it shares an access path (i.e.,
some other unit on the same multi-unit drive or
formatter) is "Unit-Online" to one or more hosts via

Algorithms and Usage Rules
4.3 Unit States

Pag e 4-7

another controller. The unit will become
"Unit-Available" via this controller if it and all units
with which it shares an access path cease being
"Uni t-Online" to any hosts via that other controller.
In terms of the "Unit-Offline" sub-state that is visible
to and reported by a controller, a unit that is actually
online to another controller will typically oscillate
between the "Online to another controller" sub-state and
the "Un i t unknown" sub-sta te, where the frequency of the
oscillation is determined by the frequency with which
DETERMINE ACCESS PATHS commands are issued to the other
controller for this unit or any unit with which it
shares an access path. See Section "Multi-Access
Drives".

5. Duplicate unit numbers. That is, two or more distinct
units have the same unit number assigned to them.
Controllers must check for duplicate unit numbers across
all units of the same device class that are
" Un i t - On lin e", t hat are " Un i t - A va i I a b Ie" , t hat are
" Un i t - 0 f f lin e" sol ely due to be i ng dis a bled 0 r k no wn 0 r
having a duplicate unit number, or that the controller
knows to be online to another controller. A controller
mayor may not, at its option, include inoperative units
when checking for duplicate unit numbers. Controllers
must not check units that are unknown (as described
below) nor may they check for duplicate unit numbers
across different device classes. Note that a duplicate
unit number does not affect a unit that is already
" Un i t - On lin e" •

6. Unit unknown. As far as the controller can determine,
no unit exists with the specified unit number.

It is possible for a unit to be "Unit-Offline" for several
reasons at the same time (unless the unit is unknown). If a unit
has a duplicate unit number and is not inoperative, then the
con'_roller must report the duplicate unit number; other causes
of the unit being "Unit-Offline" may also be reported at the
controller's option. In all other cases the controller must
report at least one cause of the unit being "Unit-Offline", but
which one it reports and whether or not it reports more than one
is optional with the controller.

The fact that a unit is inoperative may not be detectable until a
host attempts to bring the unit "Unit-Online". Such units will
be treated as and appear to be "Unit-Available" until a host
issues an ONLINE command. The ONLINE command will fail,
typically with a "Drive Error" status code. At this time either
the fact that the unit is inoperative must be recorded in the
unit itself or else AVAILABLE attention messages must be
suppressed for the unit, exactly as if an AVAILABLE command with
the "Spin-down" modifier set had been issued for the unit. In

Algorithms and Usage Rules
4.3 Unit States

Pag e 4-8

either case, AVAILABLE attention messages must not be generated
for the unit by any controller until a human interacts with the
unit or some other event occurs (such as a power failure that may
clear the error).

Controllers and/or drives should keep all units that are
"Uni t-Offline" due to being inoperative, disabled, or having
duplicate unit numbers spun-down, except when such units are
under the control of a diagnostic. The handling of units that
are in fact inoperative, but that the controller and drive
believe to be operative, is described in the preceding paragraph.

For the purpose of automatic configuration -- i.e., for the GET
UNIT STATUS command with the "Next Unit" modifier -- controllers
must acknowledge the existence of all units that are
"Unit-Online" or "Unit-Available", or that are "Unit-Offline"
solely due to being disabled or known or having duplicate unit
numbers. Unknown units must not be acknowledged. Units that are
inoperative or online to another controller mayor may not be
acknowledged at the controller's option.

Controllers must report duplicate unit numbers with a DUPLICATE
UNIT NUMBER attention message, then moniter the affected units
for the cessation of the duplicate unit number condition. When
all units except one have had their unit number changed or have
become unknown, the remaining unit becomes "Unit-Available".

Controllers must report units that they know to be online to
other controllers with an ACCESS PATH attention message. Section
"Multi-Access Drives", describes the detailed circumstances in
which this attention message must be sent.

The "Uni t-Offline" sub-states are all reported wi th a single
status code; they are partially distinguished via different
sub-codes. In addition, the sub-states are distinguished by the
functioning of the "Allow Self Destruction" modifier to the
ONLINE command, the "Next Unit" modifier to the GET UNI'r s'rATUS
command, what unit characteristics are returned by the GET UNIT
STATUS, ONLINE, and SET UNIT-CHARACTERISTICS commands, and by the
DUPLICATE UNIT NUMBER and ACCESS PATH attention messages.

Possible causes of a unit being "Unit-Offline", and the resulting
"Unit-Offline" sub-state, include:

1. The unit is "Unit-Online" via another controller. The
unit is either unknown or else known to be online to
another controller, depending upon how recently the
other controller has processed a DETERMINE ACCESS PATHS
command for this unit or a unit with which it shares an
access path. See Section "Multi-Access Drives".

Algorithms and Usage Rules
4.3 Unit States

Page 4-9

2. A power failure that affects the unit but not the
controller. The unit is unknown.

3. Hardware failure in the unit or in the connection
between the unit and the controller. The unit is either
unknown or inoperative. Note that the unit may appear
to be "~it-Available" until an ONLINE command is issued
for it, at which time it will be recognized as
inoperative.

4. Disconnecting the unit from the controller. The unit is
unknown.

5. Disabling
removing
unknown.

the
the

unit number
unit number

select mechanism (i.e.,
select plug). The unit is

~. Duplicate unit numbers. Note that this condition will
not affect a unit that is already "Unit-Online". This
condition has its own sub-state.

7. Duplicate unit identifiers. The unit is inoperative.
Note that the controller need not check for duplicate
unit identifiers.

8. Disabling the unit with the Run/Stop or Load/Unload
switch. The unit is known.

9. Disabling the unit with port selection switches. The
unit is unknown.

10. Removal of the unit from service by operator command,
typically for diagnostics, formatting, maintenance or
repair. The unit is inoperative.

11. An internal controller diagnostic decides the the unit
is sick and removes it from service. The unit is
disabled.

12. No volume is present in the drive. The unit is known.

13. The unit has not been built yet, the unit is
its shipping crate, or it has otherwise
installed yet. The unit is unknown.

still in
not been

In general, a unit that is "Unit-Offline" to one host class
driver via a specific MSCP server is "Unit-Offline" for the same
reason (same sub-state) to all host class drivers via that same
MSCP server. The only exception is a duplicate unit number
condition that arises while a unit is "Unit-Online" to one or
more class drivers. The unit remains "~it-Online" to those
class drivers to which it is already "Unit-Online", yet is
"~it-Offline" to all other class drivers.

Algorithms and Usage Rules
4 • 3 Un itS tat e s

Page 4-10

All normal operator initiated transitions to the "Unit-Offline"
state must be smooth, rather than abrupt. Attempts to disable a
unit with its Run/Stop or Load/Unload switch and/or attempts to
dismount (remove) a volume from a unit are, by definition,
"normal operator initiated transitions", and must therefore be
smooth. Any other action that a human operator would typically
use to disable a drive in a non-emergency situation must also be
smooth. Note that this does not preclude the existence of some
special mechanism for immediately disabling a unit or drive in an
emergency, provided that it is not the normal way of disabling a
unit or drive. Note that, as used in this paragraph, a command
is abo rted or rej ected if and only if a "Uni t-Of fl ine" sta tus
code is returned in its end message.

A "smooth" transi tion to the "Uni t-Offline" state implies that
all write operations, including multi-block write operations,
must either be completed in their entirety or else never begun.
To accomplish a smooth transition the controller must complete
all write operations (commands) that have already been initiated.
Other outstanding commands, including outstanding write
operations that haven't been initiated yet and all outstanding
read operations, may either be completed or aborted at the
controller's option. However, if a Sequential command from a
given connection is aborted, then all subsequently received
non-Immediate commands from the same connection must also be
aborted. Any new commands issued by a host should be rejected.

Note that establishing write protection must also be a smooth
transition.

A unit enters the "Unit-Available" state when:

1. The unit is "Unit-Offline" and all causes of the unit
being "Unit-Offline" are removed. The unit becomes
"Unit-Available" with respect to all "Controller-Online"
class drivers.

2. The unit is "Unit-Online" and a host class driver issues
an AVAILABLE command for the unit. The unit becomes
"Unit-Available" with respect to that class driver. If
the "All Class Drivers" modifier was set, the unit also
becomes "Unit-Available" with respect to all other class
drivers to which it is "Unit-Online" via that MSCP
server.

If a class driver has enabled attention messages, the MSCP server
uses AVAILABLE attention messages to notify the class driver that
a unit has asynchronously become "Unit-Available". If a class
driver sends the MSCP server an AVAILABLE command, then the
transition to "Unit-Available" is synchronous to that class
driver and an AVAILABLE attention message need not be sent to it,
although other class drivers are appropriately notified.

Algorithms and Usage Rules
4.3 Unit States

The possible causes of an
"Uni t-Avai lable" are as follows:

asynchronous

Page 4-11

transition to

1. Any transition from "Unit-Offline" to "Unit-Available".
This specifically includes the case in which the unit
was online to another controller and ceases to be online
to that other controller, even if the unit was
"Unit-Online" to the same class driver via that other
controller.

2. A transition from "Unit-Online" to "Unit-Available",
with respect to this class driver, that is caused by
some other class driver issuing an AVAILABLE command
with the "All Class Drivers" modifier set.

3. Any spontaneous transition from "Unit-Online" to
" Un i t - A va i I a b Ie" • Th at is, any t ran sit ion fro m
"Unit-Online" to "Unit-Available" that is not caused by
an AVAILABLE command.

The one exception to this applies to a unit that becomes
"Unit-Available" due to an AVAILABLE command that has the
"Spin-down" modifier set or as a side effect of certain errors
which also spin-down the unit. Such commands or errors indicate
that all class drivers are disinterested in the volume mounted on
the unit, so that no class driver should be notified of the
transition until an operator mounts a new volume or otherwise
interacts with the unit. Therefore the request to spin-down the
unit effectively suppresses AVAILABLE attention messages for that
unit until an operator interacts with the unit. Note that the
messages must be suppressed for all class drivers, MSCP servers,
and controllers that may connect to the unit, regardless of which
individual MSCP server and controller actually requested that the
unit spin-down. This effectively means that, for multi-access
drives, the fact that AVAILABLE attention messages are suppressed
must be recorded in the drive itself, rather than in the
controller.

AVAILABLE attention messages must be suppressed at least until an
operator interacts with the unit's drive, the unit becomes
"Unit-Online" to any class driver via any MSCP server, or the
unit's drive loses context. It is not acceptable for the unit's
drive to "lose context" solely to forget that AVAILABLE attention
messages have been suppressed; loss of context must be due to
some external reason, such as a power failure. The suppression
of AVAILABLE attention messages must be cancelled or forgotten if
the unit becomes "Unit-Online" to any class driver via any MSCP
server or if an operator actuates the unit's Run/Stop or
Load/Unload switch, changes the unit number selected by the lhit
Number Select Mechanism, or mounts a different volume in the
unit. Note that AVAILABLE attention messages are not suppressed
(i.e., their suppression is instantly cancelled or forgotten) if,
after a class driver issues an AVAILABLE command with the
"Spin-down" modifier set, the unit is still "Unit-Online" with

Algorithms and Usage Rules
4.3 Unit States

respect to one or more other class drivers.

Page 4-12

MSCP servers may send redundant or unnecessary AVAILABLE
attention messages at any time, provided that attention messages
have been enabled, the messages have not been suppressed as
described above, and the extra messages are infrequent enough to
avoid causing any significant overhead in either the
communications mechanism or a host. It is specifically allowable
for an MSCP server to precede every DUPLICATE UNIT NUMBER
attention message with an AVAILABLE attention message for the
same unit number.

A unit enters the "Unit-Online" state with respect to a class
driver upon the successful completion of an ONLINE command issued
by that class driver.

4.4 Unit Numbers

As described in Section "Controls and Indicators", all disk
accessible via MSCP must have a user visible and Field Service
alterable unit number. The characters displayed as the unit
number, interpreted as a decimal number, must match the binary
value passed in the "unit number" field of MSCP control messages.
MUlti-unit drives may use a single unit number select mechanism
and display for the range of consecutive unit numbers assigned to
their units.

MSCP supports unit numbers in the range 0 through 65535
(inclusive). All controllers and units must support unit numbers
in the range 0 through 251 (inclusive); unit numbers between 252
and 65535 may be supported or not at the controller's and/or
unit's option. This implies that all units accessible via MSCP
must have a unit number select mechanism capable of specifying
and a unit number display mechanism capable of displaying any
unit number in the range 0 through 251. Controllers must treat
unsupported unit numbers as if the specified unit is
"~it-Offline" due to being unknown (see preceding section).

The intent of this broad range of unit numbers is that, within a
device class, all units that are accessible to a single host must
have unique unit numbers. In pursuit of this goal units with
duplicate unit numbers are considered to be "Unit-Offline".
However, this must be balanced against another goal, namely that
transient actions performed on another unit should not be allowed
to affect continued host access to a unit that is already
"~it-Online". Controllers must balance these two goals by
following the following algorithms:

1. Controllers detect and respond to duplicate unit numbers
across all units that are "Unit-Online", that are
"Unit-Available", that are "Unit-Offline" solely due to
being disabled or known or having duplicate unit

Algor i thms and Usage Rules
4. 4 Unit Numbers

Page 4-13

numbers, or that the controller knows to be online to
an 0 the r con t roll e r • Un its t hat are "Un i t - 0 f f 1 i n e " due
to being unknown must not be considered for duplicate
unit number detection. Controllers mayor may not, at
the controller's option, consider units that are
inoperative. Detection of a duplicate unit number
condition on one unit of a multi-unit drive is treated
as a duplicate unit number condition on all other units
that share one or more of the following components with
the unit having the duplicate unit number:

a. A unit number select mechanism.

b. A Run/Stop or Load/Unload switch.

c. A spindle or other mechanical components.

2. Discovery of a duplicate unit number condition does not
affect any unit that is already "Unit-Online". A unit
that is already "Unit-Online" remains in that state
until some other event (such as an AVAILABLE command or
loss of controller context) occurs that would otherwise
cause it to become "Unit-Available", at which time the
uni t becomes " Uni t-Of f 1 i ne" and is spun-down as
described below. Note, however, that such a unit is
"Unit-Offline" to all other hosts (and therefore cannot
be brought "Unit-Online" by them) even while it remains
"Uni t-Online" to its current hosts.

3. When a controller becomes aware of a duplicate unit
number condition on two or more units connected to it,
it immediately spins-down all such units that are
"Uni t-Ava i lable" • When a uni t that was "Uni t-Onl ine"
with a duplicate unit number condition becomes
"Unit-Available" for any reason, the· controller
immediately spins it down. In both cases, units that
belong to a multi-unit drive and share a spindle or
other mechanical components are to be spun down only if
all 0 f the un its 0 f the d rive are "Un i t - 0 f f 1 i n e " 0 r
"Unit-Available".

4. The controller returns "Unit-Offline" as the state for
all units with duplicate unit number conditions that are
not already "Unit-Online".

5. The controller must recognize when a duplicate unit
number condition goes away. That is, the controller
must recognize when all units except one with the same
duplicate unit number have their unit numbers changed
and/or become unknown. When this occurs, the controller
must send AVAILABLE attention messages for the remaining
uni t (since it has just become "Un it-Ava i lable") •

Algorithms and Usage Rules
4 • 4 Un i t N urn be r s

Page 4-14

In addition to the above algorithms, controllers report duplicate
unit number conditions to class drivers using the DUPLICATE UNIT
NUMBER attention message. This allows hosts to complain to a
human operator, who will presumably remedy the condition. This
message is sent to all "Controller-Online" class drivers that
have attention messages enabled when a duplicate unit number
condition is first detected. It is permissable for a controller
to send redundant or extra DUPLICATE UNIT NUMBER attention
messages, provided that the reported duplicate unit number
condition actually exists. See Section "Duplicate Unit Number
Attention Message" for more details.

The above algorithms effectively enforce non-duplicate unit
numbers across the drives connected to the same controller.
Although not required by MSCP, it is recommended that class
drivers use the following algorithm to enforce non-duplicate unit
numbers across the drives accessible to that class driver:

1. Upon becoming aware of a unit (i.e., upon receiving an
AVAILABLE attention message), the class driver should
check if it is already aware of a unit with the same
unit number on a different MSCP server. If it is not
aware of such a unit, it should exit. If it is aware of
such a unit, it should check if that unit has the same
unit identifier.

2. If the unit identifiers are the same, it is the same
unit multi-accessed to several controllers, so exit. If
the unit identifiers are different, the class driver
should issue a GET UNIT STATUS command to see if the old
unit still exists.

3. If the old unit no longer exists (i.e., it's
"Unit-Offline"), exit. If the old unit still exists,
the class driver should check that the unit identifier
returned by GET UNIT STATUS is also different from the
unit identifier that was in the AVAILABLE attention
message. If the unit identifiers are the same, exit.
If the unit identifiers are different, the class driver
should issue an AVAILABLE command with the "Spin-down"
modifier set for the new unit. The class driver should
also issue an AVAILABLE command with the "Spin-down"
modifier set for the old unit if the class driver is not
al ready "Uni t-Onl ine" to that uni t.

4. Whenever a class driver brings an MSCP server
"Controller-Online", the class driver should issue,
through that MSCP server, AVAILABLE commands with the
"Spin-down" modifier set for all units that it has
"Unit-Online" via another MSCP server.

Algorithms and Usage Rules
4.4 Uhit Numbers

Page 4-15

5. Whenever a class driver brings a unit "Unit-Online", the
class driver should issue ONLINE commands for that same
unit number to all MSCP servers. If more than one
ONLINE commands succeeds, the class driver should check
that the unit identifiers returned by all the successful
ONLINE commands are the same. If any of the unit
identifiers are different, then the class driver should
treat all the ONLINE commands as having failed and issue
AVAILABLE commands with the "Spin-down" modifier set to
all MSCP servers on which the ONLINE command succeeded.

Note that this algorithm uses the fact that an AVAILABLE command
with the "Spin-down" modifier set suppresses AVAILABLE attention
messages until a human operator interacts with the unit.

4.5 Command Catagories and Execution Order

MSCP commands fall into one of four command categories. Each
category has a set of execution order restrictions that MSCP
servers must satisfy. The four categories and their restrictions
are described below.

Immediate commands are those commands, such as status inquiries,
that both require very little time to complete and do not cause
any unit context changes. MSCP servers must process immediate
commands immediately, without waiting for any other commands to
complete. MSCP servers must guarantee that all outstanding
immediate commands plus an additional GET COMMAND STATUS command
issued by each "Controller-Online" class driver will complete
within the controller timeout interval.

Class drivers may issue Immediate commands whenever their credit
balance is greater than ,zero, whereas all other commands may only
be issued when the class driver'S credit balance is two or
larger. This is discussed further in Section "Class Driver /
MSCP Server Communications". Class drivers are thus guaranteed
to be able to issue at least one Immediate command, and have it
executed, regardless of what other commands they may have
outstanding. In particular, the class driver is guaranteed to be
able to issue a GET COMMAND STATUS command and have it complete
within the controller timeout interval.

Sequential commands are those commands that, for the same unit,
must be executed in precise order. Sequential commands typically
alter a unit's context, such as by changing a unit
characteristic. All sequential commands for a particular unit
that are received on the same connection must be executed in the
exact order that the MSCP server receives them. The execution of
a sequential command may not be interleaved with the execution of
any other sequential or non-sequential commands for the same
unit. Furthermore, any non-sequential commands received before
and on the same connection as a particular sequential command

Algorithms and Usage Rules Page 4-16
4.5 Command Catagories and Execution Order

must be completed before execution of that sequential command
begins, and any non-sequential commands received after and on the
same connection as a particular sequential command must not begin
execution until after that sequential command is completed.
Sequentional commands are, in effect, a barrier that
non-sequential commands cannot pass or penetrate.

Non-sequential commands are those commands that controllers may
re-order so as to optimize performance. Controllers may
furthermore interleave the execution of several non-sequential
commands among themselves, performing each command a fragment at
a time. The only restrictions are:

1. Execution of a non-sequential command must not cross the
barrier created by a sequential command for the same
unit.

2. The controller must complete useful work on its oldest
outstanding command within the controller timeout
interval, so as to not cause a command timeout (see
Section "Command Timeouts").

Special commands are similar to non-sequential commands, but have
additional, unique execution order requirements. The execution
order requirements for special commands are described in the
commands' description.

Execution order is based on the order in which commands are
received by the controller's MSCP server. For commands sent by a
single class driver, the order of transmission is identical to
the order of reception. For commands sent by several class
drivers, the order of reception is essentially random. The only
way that a class driver can ensure that one of its commands will
be received after some other command issued by another class
driver is to wait until the other class driver receives the first
command's end message (i.e., wait until the first command
completes) before sending the command.

For the purpose of determining execution order, a command is
completed when the controller's MSCP server queues the command's
end message for transmission to the host. The controller need
not wait until the host has confirmed its reception, although
sequential message delivery guarantees must be preserved. The
gist of this is that, after termination of the connection between
a host class driver and an MSCP server, the absence of a
sequential command's end message implies nothing about the
execution or non-execution of the sequential command.

Algorithms and Usage Rules Page 4-17
4.6 Class Driver / MSCP Server Synchronization

4.6 Class Driver / MSCP Server Synchronization

Synchronization of a class driver with an MSCP server is
accomplished by establishing or re-establishing the connection
between the class driver and the MSCP server. When the
connection is established or re-established, the MSCP server
aborts or otherwise terminates all commands that are outstanding
from that class driver. This forces the dialogue between the
class driver and MSCP server to a known, synchronized state;
namely that of having no outstanding commands. After
establishing the connection the class driver can issue commands
without worrying about duplicating command reference numbers or
other unfortunate side effects. Note that synchronizing with the
MSCP server, if successful, causes the MSCP server to become
"Controller-Online".

As stated above, the main purpose of synchronization is to
guarantee that there are no outstanding commands, thus forcing
the dialogue between the class driver and MSCP server to a known
state. MSCP servers must ensure that this guarantee is met
before they allow synchronization to complete (i.e., before they
become "Controller-Online"). In particular, MSCP servers must
guarantee that no end messages will be sent and that no units
will have their state, context, or (data) contents changed for
any commands that were issued on an earlier incarnation of the
connection between the class driver and MSCP server. Note that
an MSCP server may allow outstanding commands to complete, either
partially or entirely, but if it does it must delay the
completion of synchronization (delay the transition to
"Controller-Online") until all such commands have completed.

Class drivers must synchronize with the MSCP server whenever the
host boots, recovers from a power failure, loses context, or is
recovering from certain errors. After synchronizing with an MSCP
server, the class driver should do the following:

1. Issue a SET CONTROLLER CHARACTERISTICS command to
establish host settable controller characteristics and
obtain non-host settable controller characteristics.

2. Issue ONLINE commands for all units that the class
driver wi shes to be "Uni t-Online" •

3. Re-issue all commands, if any, that were outstanding
before the class driver synchronized with the MSCP
server in the exact order that they were originally
issued. However, any commands that have been aborted
(i.e., for which an ABORT command has been issued) must
not be re-issued; instead the class driver should
assume that the command has been successfully aborted,
and is therefore no longer outstanding.

There is one exception to re-issuing all commands that were
outstanding. The class driver must maintain a retry limit count,

Algorithms and Usage Rules Page 4-18
4.6 Class Driver / MSCP Server Synchronization

to ensure that its oldest outstanding command won't be retried
infinitely many times. The magnitude of this limit is host
dependent, although the oldest command must be retried at least
once. When the class driver's oldest outstanding command exceeds
the retry limit count, it must be aborted and an error returned;
all other outstanding commands, however, should still be retried.
See Section "Command Timeouts" for more information.

It may be possible that a class driver will receive messages from
an MSCP server after the class driver has initiated
synchronization with the MSCP server but before the
synchronization completes. Whether or not this is in fact
possible is communications mechanism dependent, as it depends
upon the detailed design of the communications mechanism and port
driver. Any attention messages that the class driver receives
during this interval should be discarded. Any error log messages
should be logged in the normal fashion. Any end messages that
the class driver receives during this interval may be either
handled normally (thus completing the corresponding command) or
else discarded. If the class driver discards one end message, it
must discard all subsequent end messages until the
synchronization completes. It is recommended, although not
required, that class drivers handle all such end messages
normally.

4.7 Class Driver Error Recovery

The principle method of error recovery used by class drivers is
to re-synchronize with the MSCP server, as described in the
preceding section. All communications mechanism failures and
many controller failures are reported by terminating the
connection between the class driver and MSCP server, in response
to which the class driver should attempt to re-synchronize with
the MSCP server. If the class driver decides that the controller
is insane, either because the class driver received an invalid
message or because a command timed out, it should recover by
re-synchronizing with the MSCP server. Similarly, if the MSCP
server decides that the class driver is insane, it may terminate
the connection to the class driver. If the class driver is in
fact actually sane, it will re-synchronize with the MSCP server
after the port driver notifies it that the connection has been
terminated.

Aside from re-synchronization as described in the preceding
paragraph, class drivers need perform very little error recovery,
since controllers handle all recoverable errors. The only
exceptions to this guideline are as follows:

1. Errors on multi-access drives should be retried using
another controller.

Algor i thms and Usage Rules
4.7 Class Driver Error Recovery

2. Commands that fail due to the
"Uni t-Avai lable" should typically be
bringing the unit .. Unit-Online".

Page 4-19

unit being
re-issued after

3. High availability systems may wish to perform the
enhanced error recovery described below.

High availability systems may wish to use the following
additional error recovery strategy, in order to minimize the
impact of certain types of controller problems. Rather than
re-issuing outstanding commands all at once after
re-synchronizing with a controller, such a system should instead
re-issue the oldest outstanding command all by itself, preferably
with the "Express Request" command modifier set. The host class
driver should re-issue all other outstanding commands only after
the oldest command completes. The other outstanding commands may
be re-issued either all at once (recommended) or one at a time.

If the oldest command times out or otherwise fails again after
being re-issued, then it was presumably the source of the problem
and normal operation will resume. If the oldest command
succeeds, then the problem is most likely due to some race
condition within the controller and will not re-occur. If the
problem does re-occur, then successive iterations of this
algorithm will execute commands one at a time until the offending
command is found and discarded.

4.8 This section deliberately omitted.

4.9 Host Access Timeouts

MSCP servers provide host access timeouts to guarantee that
mUlti-access drives will be accessible in spite of certain
communications mechanism failures. If the communications path
between hosts and a controller fails when one or more drives are
"Unit-Online" via that controller, the drives would normally
become inaccessible. The drives can't be accessed via the
controller through which they are "Unit-Online", since that
controller can't be accessed, and they can't be accessed via a
second controller, since they are "Unit-Online" through the first
controller. The host access timeout, if enabled, eliminates this
problem by causing the first controller to automatically release
all drives if it doesn't receive a command within a specified
time interval.

The exact mechanism used for host access timeouts is to have the
controller's MSCP server become "Controller-Available" relative
to any host class driver whose host access timeout expires. The
MSCP server automatically resets the timeout whenever it receives
a command from the class driver or has a command outstanding from
that class driver; therefore the timeout will never expire if

Algorithms and Usage Rules
4.9 Host Access Timeouts

Page 4-20

the class driver maintains a reasonably constant dialog with the
MSCP server. Note that implementing host access timeouts on a
per host basis has the benefit that the MSCP server will
automatically release any resources allocated to a host if that
host goes down.

If communication with all hosts ceases, the host access timeout
of each class driver will ultimately expire, causing the MSCP
server to become "Controller-Available" relative to all hosts.
Each unit will be released, allowing it to be accessed via an
alternate controller, as soon as all class drivers that are
"~it-Online" with respect to the unit (or any other unit that
shares its access path) cease to be "~it-Online" by virtue of
becoming "Controller-Available". Ultimately all class drivers
will become "Controller-Available", thus releasing all units.

Class drivers specify the time interval that an MSCP server will
use for the host access timeout in the SET CONTROLLER
CHARACTERISTICS command. A default host access timeout of 60
seconds is used from the time a class driver becomes
"Controller-Online" until it issues its first SET CONTROLLER
CHARACTERISTICS command.

Each class driver may specify a separate time interval. This
allows class drivers to vary the host access timeout interval in
accordance with host policy and availability requirements. High
availability systems should typically use a fairly short host
access timeout, on the order of 10 to 30 seconds, together with a
background process that verifies the continued availability of
the host to controller communications path. The background
process would have the desirable side effect of ensuring that the
host access timeout never expired. Normal systems should use a
larger timeout, on the order of 1 to 5 minutes, to avoid
excessive resynchronizations, yet still allow failure recovery.
Single user and other specialized systems may disable host access
timeouts. Note that host access timeouts should typically be
enabled even on systems that do not seem to require them, as
drives may be multi-accessed to a totally separate host used as a
backup system.

MSCP servers must implement host access timeouts subject to the
following constraints:

1. The host access timeout expires, for a particular class
driver, at the amount of the host access timeout
interval after the controller or MSCP server completes
all outstanding commands from that class driver,
provided that no new commands are received from that
class driver during this interval.

2. The MSCP server must enter the "Controller-Available"
state (as a result of host access timeout expiration)
relative to a class driver no sooner than the moment of
host access timeout expiration defined in item 1 above.

Algori thms and Usage Rules
4.9 Host Access Timeouts

Page 4-21

3. The MSCP server should enter the "Controller-Available"
state (as a result of host access timeout expiration) as
soon as possible after the moment of host access timeout
expiration defined in item 1 above. Except when the
controller is saturated with work for other class
drivers, this must be no later than one second plus the
amount of the host access timeout interval after the
moment of host access timeout expiration.

In other words, the host access timeout is measured from the time
that the last command is completed. The MSCP server may defer
recognition of host access timeout expiration for up to one
second plus the amount of the host access timeout after the
formal expiration of the timeout. That is, the host access
timeout must be implemented with an accuracy range of -0% through
+100%+1 second. Furthermore, this accuracy range may be extended
on the high side if the controller is saturated with work for
other class drivers.

This definition of host access timeouts has been structured to
allow at least two alternative implementations. In the first
implementation, the controller or MSCP server starts a timer when
it goes "idle" -- when it completes the last outstanding command.
The duration of the timer is the host access timeout interval.
The timer must be designed to not err on the low side (too short
an interval) and to err by no more than a factor of two on the
high side (too long an interval). If the timer expires before
the MSCP server receives another command, declare a host access
timeout and become "Controller-Available". The second
implementation uses a continuously running timer which "ticks" at
the host access timeout interval. If the timer "ticks" twice in
succession without there being any outstanding commands or
without the MSCP server having received a command from the host,
then declare a host access timeout and become
"Controller-Available".

Each controller or MSCP server has a minimum and a maximum host
access timeout interval that it implements. If a class driver
specifies a host access timeout interval that is less than the
mInImum, then the MSCP server uses its minimum. If a class
driver specifies a host access timeout interval that is greater
than the controller's maximum, then the controller uses its
maximum. A controller's or MSCP server's minimum host access
timeout interval must be 10 seconds or less. A controller's or
MSCP server's maximum host access timeout interval must be at
least 255 seconds. That is, all controllers must fully implement
host access timeout intervals in the range 10 through 255 seconds
inclusive. Support of intervals outside this range is controller
dependent. The range of host access timeout intervals that a
controller supports must be described in the controller's
Functional Specification; it cannot be obtained via MSCP.

Algorithms and Usage Rules
4.9 Host Access Timeouts

Page 4-22

Note that all controllers and MSCP servers must also implement
the host access timeout value zero, which disables host access
timeouts.

4.10 Command Timeouts

Host class drivers use command timeouts to guarantee that all
controller or communications mechanism failures will be detected.
The failures detected by command timeouts include partially sane
or deadlocked controllers, which may continue to process new
commands even though one or more old commands have been lost and
will never complete. The use of command timeouts centers around
the GET COMMAND STATUS command; indeed, the primary purpose of
the GET COMMAND STATUS command is for command timeouts.

A controller is sane if and only if it will ultimately complete
all commands submitted to it. For practical purposes, the term
"ultimately" must be replaced with the phrase "within reasonable
time". What constitutes a "reasonable time" varies with the
complexity of the command and the performance of the controller
and drives. We can eliminate the difficulty of the host class
driver having to derive this "reasonable time" by re-stating the
definition of a sane controller as follows: A controller is sane
if and only if it will always complete useful work on its oldest
outstanding request within reasonable time. This definition lets
us set the "reasonable time" to some fixed value, and vary the
units in which we measure "useful work" according to the
complexity of the command. Command timeouts are based on this
second definition.

A class driver implements the command timeout mechanism as
follows. For each MSCP server to which it is
"Controller-Online", the class driver keeps track of which
command is its oldest outstanding command plus the previous
"command status" value for its oldest outstanding command. The
previous "command status" value should be set to all ones
whenever the oldest command completes and a new command becomes
the oldest. The class driver should issue GET COMMAND STATUS
commands for its oldest outstanding command at intervals of the
controller timeout interval or longer. When each GET COMMAND
STATUS command completes, the class driver must check if the
command for which it was issued is still outstanding and, if it
is, verify that the "command status" returned by the GET COMMAND
STATUS command is lower than the previous "command status"; this
value measures the amount of work remaining before completion of
the command. If the value ever increases or stays the same, or
if a GET COMMAND STATUS command ever takes longer than the
controller timeout interval to complete, then the class driver
should assume that the controller has failed and re-synchronize
with the controller.

Algorithms and Usage Rules
4.10 Command Timeouts

Page 4-23

In addition to guaranteeing that they will complete useful work
on their oldest outstanding command, controllers must also
guarantee that they will complete all aborted commands within the
controller timeout interval. That is, an aborted command's end
message must be sent no later than the amount of the controller
timeout interval after the ABORT command's end message. Host
class drivers can check this by setting the previous "command
status" value to one whenever the oldest outstanding command has
been aborted (i.e., when the class driver receives the ABORT
command's end message indicating that its oldest outstanding
command has been aborted).

Single host controllers -- i.e., controllers that do not provide
Multi-Host support need not guarantee that all aborted
commands will complete within the controller timeout interval if
excessively pathological situations arise. Examples of such
situations include:

1. ACCESS or ERASE commands whose byte counts exceed the
maximum data transfer size imposed on READ and WRITE
commands by the communications mechanism. For example,
the Unibus imposes an architectural maximum transfer
size of 2**18 bytes, since that is the size of the
Unibus address space. Therefore ACCESS and ERASE
commands whose byte counts exceed 2**18 bytes are
excessively pathological for controllers that use the
Unibus as their communications mechanism, so the
controller need not meet the abort timeout requirements
when such commands are outstanding.

2. Compound or multiple errors, causing error recovery
sequences to stretch out to unrealistic lengths.

If the command timeout for an aborted command expires due to such
a situation, the class driver will re-synchronize with the MSCP
server and re-issue all outstanding commands except for those
that had been aborted. Since the aborted commands will not be
re-issued, the timeout will not re-occur. Thus this exception is
transparent to host class drivers.

The above algorithm applies to non-immediate commands. With one
exception the same algorithm may also be used for immediate
commands, although a simpler one (using the fact that all
immediate commands complete within the controller timeout
interval) is also appropriate. The one exception is the GET
COMMAND STATUS command used by the timeout algorithm itself.
This command must be timed out as follows. If the class driver's
credit balance is zero when it attempts to issue the GET COMMAND
STATUS command, it must queue the GET COMMAND STATUS command for
immediate transmission (before any other commands that may be
outstanding) when its credit balance becomes non-zero. If the
controller timeout interval expires again before the GET COMMAND
STATUS command has both been transmitted and completed, then the
class driver should assume that the controller has failed. Note

Algorithms and Usage Rules
4.10 Command Timeouts

Page 4-24

that the class driver's credit balance is guaranteed to be
non-zero when all outstanding immediate commands have completed.
Note also that controllers or MSCP servers must guarantee that
all outstanding immediate commands plus one additional GET
COMMAND STATUS command will complete within the controller
timeout interval.

Upon concluding that a controller has failed, the class driver
must re-synchronize with the controller's MSCP server and
re-issue all commands (except commands that it has tried to
abort) that were outstanding to that MSCP server in the same
order that they were originally issued. In particular, the
oldest outstanding command -- the one that timed out -- must be
issued first (after initial SET CONTROLLER CHARACTERISTICS and
ONLINE commands). The only exception to this is if the command's
retry count expires. The class driver should maintain a retry
count of the number of times the oldest command has timed out and
been retried, and abort the command if the retry count exceeds a
host dependent limit. The size of this retry limit is determined
by host policy, except that all commands must be retried at least
once. Note that sub-code zero of the "Controller Error" status
code has been reserved for commands that exceed their retry
count. This sub-code must never be generated by MSCP servers;
it is generated by class drivers as a standard means of reporting
command timeout errors.

In order to implement command timeouts, the host class driver
must first obtain the controller timeout interval via the SET
CONTROLLER CHARACTERISTICS command. Therefore the class driver
should issue a SET CONTROLLER CHARACTERISTICS command as the
first command after becoming "Controller-Online". The class
driver should use a controller timeout interval of 10 seconds for
this initial command. The class driver must never use a time
interval that is shorter than the controller specified controller
timeout interval for its command timeout determination, although
the class driver may use a time interval that is longer than the
one specified by the controller. The controller timeout interval
specified by the controller must not be larger than 4 minutes and
15 seconds (i.e., 255 seconds).

One characteristic of this command timeout algorithm is that MSCP
servers need not implement, and indeed most will not implement,
the GET COMMAND STATUS command for any command that the MSCP
server can guarantee will complete within the controller timeout
interval. The GET COMMAND STATUS command should always return
the value zero as the "command status" of such a command. It is
acceptable if, due to vagaries of controller optimization
algorithms, such a command will occasionally timeout. This is
acceptable, so long as the frequency of such timeouts is
extremely small and the controller immediately begins processing
the first command it receives after re-synchronization. Since
the class driver re-issues commands in the same order that they
were originally issued, the oldest or timed out command is
re-issued first, effectively guaranteeing that it will not be

Algo r i thms and Usage Rules
4.10 Command Timeouts

Page 4-25

delayed again by the controller's optimization algorithms. (The
simplest way for most controllers to implement this will
typically be to treat the first transfer command received across
a newly established connection as if it were an Express Request).

4.11 Disk Geometry and Format

The host accessible portion of a disk unit consists of a vector
of fixed length blocks, called logical blocks. Logical blocks
are identified by logical block numbers (LBNs) which range from
zero through N-l inclusive, where "N" is the total number of
logical blocks on the unit. The logical blocks on a unit are
divided into two mutually exclusive regions:

1. The host area consists of those logical blocks available
for host data storage. Logical blocks in the host area
have LBNs in the range zero throught tE-I inclusive,
where "US" is the "unit size", or number of logic~l
blocks in the host area. The host obtains "US" or the
"unit size" from the ONLINE or SET UNIT CHARACTERISTICS
command end messages.

2. The unit's Replacement and Caching Table (RCT), used to
record bad block replacement and miscellaneous
housekeeping information. This information is further
described below. The RCT (actually, multiple copies of
the RCT) occupies the logical blocks numbered US through
N-l inclusive.

All of the logical blocks in the host area are guaranteed to be
"good" i.e., to be free of permanent or hard errors (media
defects). Most controllers implement this via bad block
replacement. A pool of replacement blocks, identified by
replacement block numbers (RBNs), is provided on the disk.
Replacement blocks are not directly accessible to hosts. All
host area logical blocks that are bad -- i.e., that contain media
defects leading to hard errors or large numbers of correctable
errors -- are replaced by a replacement block. The mechanism
used to perform this replacement, and to revector accesses to bad
logical blocks to the proper replacement blocks, is described in
the DEC Standard Disk Format and/or the controller's Functional
Specification. The pool of replacement blocks is typically
distributed throughout the disk, so that revectoring of logical
block accesses to replacement blocks has negligible impact on
performance. See Section "Bad Block Replacement" and DEC
Standard Disk Format for more information on bad block
replacement.

Algor i thms and Usage Rules
4.11 Disk Geometry and Format

Page 4-26

The logical blocks that contain the RCT are not guaranteed to be
"good". Since the RCT describes the bad logical block to
replacement block mapping, mapping bad RCT blocks to replacement
blocks would present an insoluble recursion problem. Instead of
using replacement blocks for bad RCT blocks, the RCT region
actually contains multiple copies of the RCT. Hosts obtain the
size of each RCT copy and the number of RCT copies via the GET
UNIT STATUS command. The last copy of the RCT may be truncated.
See the DEC Standard Disk Format. Note that the disk is unusable
if the corresponding block is bad in every copy of the RCT.

The detailed format and access algorithms for the RCT are
described in the DEC Standard Disk format. In general, however,
each copy of the RCT contains the following information:

1. One entry per replacement block, identifying the logical
block, if any, that has been replaced by the replacement
block.

2. Context information identifying the bad block
replacement operation, if any, that is currently in
progress on this unit. This information is used to
complete the bad block replacement operation if the host
and/or controller should crash in the middle of bad
block replacement.

3. A Volume Write Protect flag.

Alternatively, a controller may use a non-standard replacement
scheme or some other scheme than bad block replacement to
guarantee that the logical blocks in the host area are "good".
The mechanisms used by such a controller to guarantee that the
host area logical blocks are "good" must be totally invisible to
hosts, and must not require host cooperation for their
initialization, use, or maintenance. Such a controller or unit
must still provide the first block of the RCT, which contains the
Volume Write Protect flag.

The host visible portion of each logical block consists of a
fixed number of data bytes. The number of data bytes is either
512 or 576, determined when the disk volume is formatted. All
logical blocks on a disk volume have the same number of data
bytes.

The data bytes are the only portion of logical blocks that are
directly host visible. Certain other items, however, must be in
each logical block as their presence is implied by various MSCP
functions:

1. Each block must contain a forced error indicator, so as
to properly implement and recognize the "Force Error"
command modifier.

Algo r i thms and Usage Rules
4.11 Disk Geometry and Format

Page 4-27

2. Each block must contain a bad block indicator, so that
references to bad blocks can be efficiently revectored
to the proper replacement blocks. This is unnecessary
if the controller does not use bad block replacement to
provide a "perfect" host area.

As stated above, the host area of a disk is structured as a
vector of logical blocks. From a performance viewpoint, however,
it is more appropriate to view the host area as a four
dimensional hyper-cube, the four dimensions being cylinder,
group, track, and sector. Thus, it is possible to decompose a
logical block number into a unique quadruple of numbers, namely
the block's cylinder number, group number, track number, and
sector number. Cylinder number is most significant and sector
number is least significant.

Alternatively, we can define a track as consisting of a fixed
number of blocks, a group as consisting of a fixed number of
tracks, and a cylinder as consisting of a fixed number of groups.
The position of a block within a track is the block's sector.

The terms sector, track, and cylinder all come from the geometry
of classical disk drives. Groups can be viewed as an
optimization for short seeks whose seek time is easily
predictable.

At any particular instant, the set of logical blocks that are
potentially accessible is those blocks in all tracks that are in
the same sector, group, and cylinder. In the absence of
transfers to a different group or cylinder, this set of
potentially accessible blocks changes over time by keeping the
group and cylinder constant while incrementing the sector (modulo
the number of blocks/sectors in a track). Referring to our
hyper-cube analogy, the set of potentially accessible blocks form
a line parallel to the track axis. This line moves parallel to
the sector axis, wrapping around when it reaches the edge of the
hyper-cube. A disk therefore provides cyclic access to the
blocks in a particular group and cylinder.

This access structure to logical blocks implies that, to a close
approximation, the track to which a block belongs has no effect
upon performance. That is, switching tracks within the same
group and cylinder effectively requires zero time. Two separate
transfers in the same group and cylinder and for the same sectors
have similar performance, regardless of what tracks they are on.
To a first order approximation, two separate transfers on
successive sectors of different tracks in the same group and
cylinder have the same performance as a single, two sector
(block) transfer.

Algorithms and Usage Rules
4.11 Disk Geometry and Format

Page 4-28

Changing cylinders, however, does require a certain amount of
time. The amount of time required to switch between two
cylinders is approximated by a monotonically increasing function
of the difference between the two cylinder numbers. The time to
switch between cylinders is typically not affected by whether or
not groups are also being changed. After switching cylinders,
the sector position of the disk (i.e., which sector's blocks are
immediately accessible) is unpredictable.

Changing groups also requires a certain amount of time.
Generally, the time to switch between groups in the same cylinder
is no more than, and often less than, the time to switch between
one cylinder and the next. If cylinders and groups are both
changed at the same time, the time to switch groups is
effectively zero, as it is included in the time to switch
cylinders.

When changing from one group to the next (successive) group
within the same cylinder, the time required to switch groups is
predictable, so that transfers are optimized. If a transfer to
sector 5 in group G is followed by a transfer in group G+l of the
same cylinder, then sector 5+1 (modulo the number of
sectors/blocks in a track) is the optimal sector for the new
transfer and sector 5 is the maximally unoptimal sector for the
new transfer. The main effect of this is to optimize continuous
(spiral) transfers that cross group boundaries.

Note that what has been described herein is the model for disk
logical geometry, which may have a tenuous relationship to a
disk's actual physical geometry. Disk designers should devise a
logical to physical geometry mapping which optimizes the accuracy
of the model herein described. This will generally be done as
follows. Head or track switches that effectively require zero
time (i.e., that require less than the inter-sector time) will be
reported as logical M5CP tracks. Head or track switches that
require significant amounts of time will be divided into two
classes: those that require only a little time (typically less
than one rotation) and whose time is predictable, and those that
require somewhat more time and/or a lot of time. The switches
that require only a little time will be reported as logical MSCP
groups. The switches that require more time will be reported as
logical M5CP cylinders, where the switches should be mapped to
cylinders in such a manner as to minimize the amount of time
required to switch between cylinders that are (numerically) close
together.

The affect of this geometry on multi-block transfers is as
follows. A multi-block transfer requires a certain minimum time,
which is the time to transfer one block or sector times the
number of blocks in the transfer. Crossing track boundaries
requires no additional time. Crossing a group boundary requires
a small, relatively fixed additional amount of time; this time
is typically less than the time to transfer an entire track
(i.e., less than one rotation). Crossing a cylinder boundary

Algor i thms and Usage Rules
4.11 Disk Geometry and Format

Page 4-29

requires a somewhat larger additional amount of time; this time
is typically at least the time to transfer an entire track (i.e.,
at least one rotation).

The affect of this geometry on host allocation policies for
random-access files is as follows. Whenever possible, a
random-access file should be allocated within a single group. If
this is not possible, the host should try to allocate it within a
single cylinder. If this is also not possible, the host should
allocate it in the minimum number of adjacent cylinders.

When a block has a high probability of being accessed immediately
after another block, hosts should attempt to allocate both blocKs
in the same group or, if that is not possible, in the same
cylinder. If both blocks cannot be allocated within the same
cylinder, then they should be in cylinders that are as close
together as possible.

Host's obtain the size of a unit's tracks, groups, and cylinders
from the GET UNIT STATUS command's end message. Some of these
disk geometry concepts may not apply to all disk uni ts. Uni ts
report the fact that a concept doesn't apply by specifying its
size to be the same as the next larger concept. For example, a
disk unit that doesn't have groups would specify one group per
cylinder, implying that groups and cylinders are the same size.
Zero should be supplied for the cylinder size if the cylinder
concept is inappropriate to a disk unit, which hosts should
interpret as the entire unit being a single cylinder. The value
zero may equivalently be interpreted as specifying an arbitrarily
large number of groups per cylinder. This may propagate
downwards;' if both cylinders and groups are inappropriate to the
unit, then zero would be provided for both their sizes. If the
model of cyclic access to the sectors in a track is
inappropriate, then the unit should typically specify one block
per track.

The following examples illustrate how inappropriate concepts
should be specified:

1. A "disk" implemented as a pure random-access meloory
(i.e., semiconductor RAMs) would specify one block per
track (since cyclic access doesn't apply) and zero for
the cylinder and group size (since the entire unit is
effectively a single group).

2. A classical DECtape could be specified several ways, but
one block per track, one track per group, and one group
per cylinder (i.e., each block is a separate cylinder)
is probably the most natural.

3. A single loop shift register or delay line (such as an
ultrasonic delay line) would specify zero for the track,
group, and cylinder size, since the entire unit is
effectively a single track.

Algorithms and Usage Rules
4.11 Disk Geometry and Format

Page 4-30

There is one exception to the above discussion, concerning the
specification of track size. Track size, in addition to being
useful for performance prediction, is also used in the bad block
replacement algorithm specified in DEC Standard Disk Format. It
is possible that the track size appropriate for performance
considerations will be different from the track size required by
bad block replacement. If this occurs, the track size required
by bad block replacement must be specified, as the performance
effects are a secondary consideration.

Note that all of this performance oriented disk geometry only
applies to the host area of a disk unit. The concepts need not
apply to the Replacement and Caching Table (RCT) and any other
areas of a disk, as access to those areas is not performance
sensitive and/or not host visible.

4.12 Bad Block Replacement

Bad block replacement is a technique used with disk class devices
to present each unit as a single logically contiguous set of
usable blocks. See the preceding section for a discussion of
logical blocks, replacement blocks, and a high level description
of bad block replacement.

Most bad blocks are detected when a disk volume is manufactured.
These blocks are always replaced when the volume is formatted, as
are any other blocks that the formatter can determine are bad.
Other blocks become bad during normal use, and must be replaced
dynamically. MSCP is solely concerned with dynamic bad block
r~placement.

Usually, but not necessarily always, the host performs bad block
replacement in response to the controller reporting a bad block.
The algorithm used to perform bad block replacement is described
in DEC Standard Disk Format.

Controllers only report bad blocks (to hosts) in transfer command
end messages. This is a direct consequence of the fact that
controllers only detect bad blocks while performing disk
transfers. They report bad blocks to hosts by means of the "Bad
Block Reported" end message flag. If this flag is set, then the
"First Bad Block" field in the end message is the logical block
number of the first bad block (lowest block number) encountered
by the transfer. A second flag, the "Bad Blocks ~reported" end
message flag, is set to indicate that multiple bad blocks were
encountered by the transfer, implying that one or more were not
reported to the host. After replacing the first bad block, the
host may (at its option) reissue the transfer to determine the
next bad block, repeating this process until all of the bad
blocks are replaced. Given the likely incidence of multiple bad
blocks in a transfer, it is unclear that this yields any benefit.

Algorithms and Usage Rules
4.12 Bad Block Replacement

Page 4-31

When performing bad block replacement, the host must access and
update the unit's Replacement and Caching Table (RCT) , inform the
controller that the block has been replaced, and initialize the
new replacement block. The host accesses and updates the RCT
using ordinary transfer operations, specifying a logical block
number in the range assigned to the RCT. The host informs the
controller that the block has been replaced with the REPLACE
command; this allows the controller to reformat the disk to
reflect the bad block replacement. The new replacement block is
initialized with a normal WRITE command, specifying the bad
block's logical block number, after the REPLACE command has
completed.

While a bad block replacement operation is in progress, the
details of the replacement operation being performed are recorded
in a portion of the unit's Replacement and Caching Table (RCT).
The information recorded includes the bad block's LBN, the
replacement block's RBN, and the data to be written into the
block at the conclusion of the replacement operation. Recording
this information in the RCT allows the bad block replacement
operation to be successfully completed in the event of a system
crash, power failure, or other interruption. When the unit next
becomes "~it-Online", the host must check the RCT and complete
any replacement operation that was in progress. At the same time
the host must check the Volume Write Protect flag and take the
actions described in Section "Write Protection".

4.13 Write Protection

There are several ways that a unit or volume may be write
protected under MSCP:

Hardware Write Protection

The unit's write protect mechanism has been activated by a
user, causing the unit to be write protected.

Software Write Protection

The host has requested that the unit be write protected.

When Hardware Write Protection is established (i.e., when a user
activates the unit's write protect mechanism), the controller
must provide a smooth transition to the write protect state.
That is, the controller must complete all write operations
(commands) that it has already initiated on the unit before
actually prohibiting writes. Note, however, that the controller
should immediately reject any new write operations that it
receives after the user activates the unit's write protect
mechanism. Write operations that the controller received before
the write protect mechanism was activated, but that haven't been

Algorithms and Usage Rules
4.13 Write Protection

Page 4-32

initiated yet, may either be rejected or completed at the
controller's option. The end result of this is that each
individual write command or operation is either completed in its
entirety or else rejected before any of its data is written to
the unit. Note that this issue cannot arise with Software Write
Protection, as they are established and cleared by sequential
commands, which implies that no write operations can be
outstanding.

Note that it is not possible to perform bad block replacement
when a unit is Hardware Write Protected.

A unit's Write Protect Status Display Mechanism must indicate the
"inclusive or" of all forms of write protection. That is, the
display must indicate that the unit is write protected both when
it is Hardware Write Protected and when it is Software Write
Protected.

Whenever a host brings a unit "Unit-Online", it must check the
"Volume Write Protect" flag in the unit's RCT. This is in
addition to the other checks it must make for a partially
completed bad block replacement operation (see Section "Bad Block
Replacement") • If the RCT flag is set, the host should
immediately (software) write protect the unit with a SET UNIT
CHARACTERISTICS command. When a user or a higher level host
process subsequently decides to write enable the volume, the
Software Write Protect status must be cleared with a SET ~IT

CHARACTERISTICS command and the RCT accessed to clear the flag.
See DEC Standard Disk Format for RCT access algorithms and the
detailed format of these RCT flags.

4.14 Compare Operations

MSCP includes the following kinds of compare operations:

1. The COMPARE HOST DATA command.

2. Read-compare operations, invoked by the "Compare
unit flag or by the "compare" modifier on
command.

Reads"
a READ

3. Write-compare
Writes" unit
WRITE command.

operations,
flag or by

invoked by the "Compare
the "compare" modifier on a

The operation of these different types of compare operations is
described below. Note that all of the compare operations report
the first difference or other error starting from the beginning
of the transfer. Therefore the compare operation at the end of
the transfer may be aborted if a difference is discovered at the
beginning.

Algorithms and Usage Rules
4.14 Compare Operations

Page 4-33

The COMPARE HOST DATA command is used to verify that data in host
memory matches data on a unit. The data is obtained from the
unit in the manner that is most convenient or efficient for the
controller. In this respect the COMPARE HOST DATA command
operates identically to a READ command. Unlike the READ command,
the data is not transferred to host memory; instead, data is
obtained from host memory and compared against the data obtained
from the unit. Upon completion of the command the controller
reports whether the data was identical or different. The data
being different is reported as a "Compare Error" in the command's
end message. However, no error log message is generated as this
is not considered to be a "significant" error (since it can be
deliberately caused by user programs).

Read-compare and write-compare operations are performed at the
conclusion of the appropriate transfer commands to verify that
the data was correctly transferred and that the data can now be
obtained from its destination. The general algorithm used is to
obtain the data from its destination and compare it against the
data re-obtained from its source.

If a read-compare or write-compare operation fails, the
controller must interpret this as implying that the original
transfer failed and therefore retry the original transfer if
appropriate. If the controller successfully obtains the data
from its source and destination, but the data is different, then
the controller must retry the original transfer and report the
compare error in an error log message. If the controller cannot
successfully obtain the data from its destination, but the error
is one that may be eliminated by re-writing the data to its
destination, then the controller must also retry the original
transfer and report the error (from the attempt to obtain the
data from its destination) in an error log message. All other
errors need not be retried, but must be reported in an error log
message. The only exception to the above is commands that have
the "Suppress Error Recovery" modifier set; the controller may
or may not, at the controller's option, retry the original
transfer if a compare error occurs in such a command.

For example, "Data Errors", such as an uncorrectable ECC error,
must be retried on write-compare operations. They need not be
retried on read-compare operations, since an unrecoverable "Data
Error" implies that the READ itself will fail. "Compare Errors"
must always be retried. Note that the controller need not
discriminate amoung types of errors -- it may always retry all
errors during read-compare or write-compare operations,
regardless of whether or not the error will inhibit the original
transfer.

The number of retries required for read-compare and write-compare
operations is controller dependent. However, all controllers
must retry such operations at least once. The exact number of
retries that a controller implements should be chosen based on
undetected error rate characteristics. The controller may either

Algorithms and Usage Rules
4.14 Compare Operations

Page 4-34

retry the entire transfer, or else only retry the portion that
includes the error.

4.15 Multi-Unit Drives and Formatters

A multi-unit drive is a single physical disk drive that appears
as several independent units to hosts. So-called fixed plus
removable disk drives, providing one removable disk unit and one
non-removable disk unit, are the most common example of
mUlti-unit drives. A mUlti-unit formatter is a single set of
interface or read/write electronics that connects several
otherwise independent units to controllers.

All the units of a mUlti-unit drive or formatter share a single
access path to controllers. This implies that all of the units
must be "connected" to the same controller. In particular, if
one unit of a multi-unit drive or formatter is "Unit-Online" via
a controller, then all the other units of the multi-unit drive or
formatter may only be accessed by that same controller. That is,
the other units are "Unit-Offline" to all other controllers.
Awareness of this characteristic is critical for high
availability systems -- if a failed operation on a multi-access
unit is to be retried via another controller, and the unit is
part of a multi-unit drive or formatter, then all units of the
drive or formatter must be switched to the other controller.

Some units of a multi-unit disk drive may share mechanical
components as well as interface electronics. Such units are said
to share a spindle. That is, the units must either be all
spinning or all not spinning, just as if the units shared a drive
motor or spindle (which they typically will). Such units must
also share a single Run/Stop switch, since they are always
spun-up and spun-down together. Hosts must also be aware of
units which share a spindle, as dismounting one such unit
requires that all units sharing the same spindle be spun-down.

The units of a multi-unit drive or formatter are identified by
the "multi-unit code" unit characteristic field. Hosts obtain
this two byte field via the AVAILABLE attention message or in the
end message of a GET l}JIT STATUS, ONLINE, or SET ll'JIT
CHARACTERISTICS command. The low byte of this field contains a
controller dependent encoding of the access path between the
controller and the drive. The high byte of this field contains a
controller dependent encoding of the spindle, on a particular
access path, that the unit uses. Controllers may use any
encoding whatsoever, provided that each access path and each
spindle (within an access path) has a unique value. Note that
the access path byte is implicitly qualified by the controller's
or MSCP server's identity, and that the spindle byte is
implicitly qualified by the access path.

Algorithms and Usage Rules Page 4-35
4.15 MUlti-Unit Drives and Formatters

Hosts use the "multi-unit code" field as follows. When a host
decides to spin-down a unit, it scans all other units that are
"Uni t-Onl ine" via the same MSCP server for those uni ts whose
entire "multi-unit code" field (both bytes) matches the unit
being spun-down. Such units, if any, share a spindle or other
mechanical components with the unit being spun-down, so that they
must be spun-down together. When a host decides to access a unit
via a different controller, it scans all other units that are
"Uni t-Onl ine" via the same MSCP server for those uni ts whose low
byte of the "multi-unit code" field matches the unit being
switched. Such units, if any, share an access path with the unit
being switched, so that they must also be switched to the new
controller.

Note that the low byte of the "multi-unit code" field (the access
path) is meaningless for units that are inherently restricted to
a single controller. Controllers may return any fixed value as
the access path encoding for such units, provided that it doesn't
duplicate the value returned for any units on the same controller
that are not inherently restricted to a single controller.

This use and format of the "multi-unit code" field implies the
following architectural restrictions on all controllers:

1. All units that share a spindle or other mechanical
components must also share an access path. Note that
this is an essential restriction for mUlti-unit drives,
regardless of how shared components are communicated.
If units that share a spindle did not share an access
path, then they could be simultaneously "Unit-Online"
via different controllers, making it impossible to
coordinate a simultaneous spin-down.

2. There is a maximum of 256 access paths per controller.
In the absence of multi-unit drives or formatters, this
implies a maximum of 256 units per controller.

3. There is a maximum of 256 spindles per access path. In
the absence of shared spindles, this implies a maximum
of 256 units per access path or formatter.

Algorithms and Usage Rules Page 4-36
4.16 Controller and Unit Identifiers

4.16 Controller and Unit Identifiers

MSCP requires that all controllers and drives have unique
identifiers, called controller identifiers and unit identifiers.
The structure of these identifiers is as follows:

31
+-------------------------------+
I unique device number I
+-------+-------+ +
I class I model I I
+-------+-------+---------------+

The "class" byte identifies the type of the subsystem
controller, disk drive, etc. The "model" byte identifies the
exact model of the subsystem within its class. All valid class
and model codes are non-zero, implying that all valid identifiers
are non-zero. The "unique device number" field must uniquely
identify the device among all devices of that same class and
model. The device serial number could be used as the "unique
device number", although that isn't required. Currently defined
values for the "class" and "model" bytes are listed in Appendix
C. Values for new devices must be added to that appendix, via an
ECO to this specification, as new products are developed. Note
that different units of multi-unit drives are distinguished by
having different "model" bytes; the "class" and "unique device
number" fields are typically identical. Note also that all MSCP
servers for the same device class within the same controller must
return the same controller identifier.

As previously stated, MSCP requires that controller and unit
identifiers be unique across all devices accessible via MSCP.
This clearly cannot be checked by controllers. Controllers can,
however, enforce unique unit identifiers across the units that
are attached to themselves. This is done using the following
algorithms:

1. Controllers should detect and respond to duplicate unit
identifiers across all units whose unit identifiers the
controller can obtain, including all units that would
otherwise be "Unit-Online" or "Unit-Available".
Detection of a duplicate unit identifier on one unit of
a multi-unit drive is treated as a duplicate unit
identifier condition on all other units that share one
or more of the following components with the unit having
the duplicate unit identifier:

a. A unit number select mechanism.

h. A Run/Stop or Load/Unload switch.

Algorithms and Usage Rules Page 4-37
4.16 Controller and Unit Identifiers

c. A spindle or other mechanical components.

Note that duplicate
regardless of the
Load/Unload switch.

unit
state

identifiers
of a unit's

are detected
Run/Stop or

2. Whenever a controller becomes aware of a duplicate unit
identifier, it immediately spins-down all units with the
duplicate identifier and forces them to remain
spun-down. The controller spins-down the units
regardless of their current state. The controller
typically forces them to remain spun-down by spinning
them down again whenever an operator spins them up.

3. The controller returns "~it-Offline" with sub-state
"inoperative" as the state for all units with duplicate
unit identifiers. In addition, if the unit might
potentially be connected to another controller, the
controller should flag the presence of the duplicate
unit identifier in the drive. Other controllers, if
any, must check this flag and also treat the unit as
"Unit-Offline" if the flag is set.

Whether or not a controller does in fact check for duplicate unit
identifiers is controller dependent. Note that a duplicate unit
identifier is a drastic failure, indicative of some otherwise
undiagnosed hardware malfunction.

4.17 Media Type Identifiers

Controllers return a
accessible via that
pieces of information:

media type
controller.

identifier for each unit
This identifier encodes two

1. The preferred device type name for use with the unit.
These two alphabetic characters are conventionally used
with the unit number and a controller designator as the
fully qualified operating system identifer for the unit.

2. The name (product name) of the media used on the unit.
This name should be printed on the unit's front panel
and on all removable media that may be used with the
unit.

The primary reason for returning this information is to simplify
operating system support for generic device allocation.

The media type identifier returned via MSCP is a 32 bit quantity
encoded as follows:

31 26 21 16 11 7 6
+----+----+----+----+----+------+

Algorithms and Usage Rules
4.17 Media Type Identifiers

I 00 I Dl I A0 I Al I A2 I N
+----+----+----+----+----+------+

where the fields are as follows:

00

Page 4-38

01 The preferred device type name for the unit. 00 and 01 are
five bit fields, each encoding one alphabetic character. "A"
is encoded with the value 1, "8" with the value 2, etc. 00
encodes the left character of the device type name, 01 the
right character.

A0
Al
A2
N The name of the media used on the unit. A0 through A2 are

five bit fields, each encoding an alphabetic character or
nUll. "A" is encoded with the value 1, "8" with the value 2,
etc. Zero represents a null or the abscence of a character.
One to three characters of the media name are encoded, left
justified, in A0 through A2. N is a seven bit field
containing the value of two decimal digits.

Note that the encoding of
consists of one, two, or
exactly two digits (i.e.,
that the product names
this format.

the media name assumes that the name
three alphabetic characters followed by
ann, aann, or aaann). MSCP requires

for all mass storage devices adhere to

Currently defined device type and media names (i.e., currently
defined media type identifier values) are listed in Appendix c.
Names or values for new devices must be added to that appendix,
via an ECO to this specification.

CHAPTER 5

MSCP CONTROL MESSAGE FORMATS

5.1 Generic Control Message Format

All MSCP control messages consist of a 12 byte header and a 36
byte or shorter parameter area. The device class (e.g., disk)
does not appear in the control message; it is implied by the
connection or MSCP server to which the control message is sent.
Multi-byte numbers are stored least significant byte first (i.e.,
using the standard VAX11 number formats). Messages are laid out
as follows:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers or status I opcodel
+-----------------------+-------+
I I
/ parameters /
/ /
I I
+-------------------------------+

The length of the parameter area varies depending upon the
opcode.

The communications mechanism conveys both the text of a message
and its length. The receiver of a message uses the its length to
verify that all required parameters are in fact present.

The communications mechanism may restrict the allowable message
lengths. For example, it might require that all messages have a
fixed length of 48 bytes or that the length be an even multiple
of 4 bytes. For this reason the message lengths defined by MSCP
are minimum lengths; senders may pad messages as necessary to
meet communications mechanism length restrictions. The contents
of the padding -- that is, the contents of any data past the end
of the message formats shown in this document -- are reserved and
must follow the rules for reserved fields defined in the

MSCP Control Message Formats Page 5-2
5.1 Generic Control Message Format

following section. (i.e., such padding must contain zeros).

The fields in the message header are interpreted as follows:

command reference number

A 32 bit, unique, non-zero number used to identify host
commands. Class drivers should supply a unique reference
number in each command that they send to an MSCP server. The
MSCP server copies the reference number to the command's end
message and to all error log messages that relate to that
specific command. The MSCP server supplies a reference
number of zero in attention messages and in error log
messages that do not relate to a specific host command. A
class driver may supply a zero reference number if it does
not need to associate a command with its end message.

Command reference numbers must be unique across all commands
that are outstanding on the same connection. That is, they
must be unique across all outstanding commands issued by a
single class driver (host) to a single MSCP server. The
class driver may re-use a command's reference number when the
command is no longer outstanding -- i.e., after receiving the
command's end message or after re-synchronizing with the MSCP
server. Command reference numbers need not be unique for
commands issued by different class drivers -- i.e., commands
issued by different hosts or commands for different MSCP
servers from the same host. Therefore controllers must
internally use the combination of a command reference number
and the connection on which the command was received as the
unique identifier of an outstanding command.

Command reference numbers are not interpreted in any way by
MSCP servers. Their purpose is to provide a unique
identifier by which class drivers can name commands. They
are used by class drivers to match end messages and error log
messages with the corresponding command message and to
identify the object of an ABORT or GET COMMAND STATUS
COMMAND.

unit number

Identifies the specific unit within the device class to which
the message applies. This value is the binary equivalent of
the decimal unit number displayed by the unit select
mechanism.

opcode

Identifies the meaning or purpose of the message. In
messages sent from a class driver to an MSCP server, this
field specifies the operation or command to be performed. In
messages sent from the controller to the class driver, this
field specifies whether this is an end message or an

MSCP Control Message Formats Page 5-3
5.1 Generic Control Message Format

attention message. The opcode of an end message also
identifies the type (opcode) of the command to which the end
message corresponds. A message's opcode implicitly specifies
the length and format of the message, including the
interpretation of any parameters that are present.

modifiers or status

This field has different formats in command messages and end
messages, and is reserved in attention messages. In command
messages this field has the following format:

31 16 15 8 7
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+

The "modifiers" field contains bit flags that modify the
operation identified by "opcode", or zero if no modifiers are
specified.

In end messages this field has the following format:

31 16 15 8 7
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+

The "status" field identifies the completion status of the
command; the "flags" field contains bit flags, called end
flags, that report certain conditions that are disjoint from
normal completion status of a command. These fields are
further described in Sections "End Message Format" and
"Status Codes".

5.2 Reserved and Undefined Fields

Reserved fields are those fields that are intended for possible
future extensions to MSCP. The use of such fields must follow
certain rules, in order to ensure that such future extensions can
be upwards compatible with the current version of MSCP. In
general, the sender of a message must supply the value zero in
all reserved fields. The action for a message receiver varies,
and is discussed below.

An undefined field is just that -- its contents are controller
implementation dependent, and therefore cannot be used in any
meaningfull way by class drivers. llidefined fields are provided
in order to simplify controller implementation. Class drivers
must ignore the contents of undefined fields.

MSCP Control Message Formats Page 5-4
5.2 Reserved and Undefined Fields

A field, as used in this discussion, may have any length. In
particular, it may be an individual bit of a flags word or byte
as well as an entire byte, word, or whatever.

Class drivers must supply the value zero in the reserved fields
of all messages (commands) that they send to a controller, and
must also ignore the contents of reserved fields in all the
messages (end messages, attention messages, and error log
messages) that they receive from an MSCP server. MSCP servers
must supply the value zero in the reserved fields of all messages
(end messages, attention messages, and error log messages) that
they send to class drivers. MSCP servers must either ignore the
contents of reserved fields in the messages (commands) that they
receive from class drivers or verify that the contents are zero;
the command is treated as invalid if the contents are non-zero.
Whether or not an MSCP server verifies that reserved fields.are
zero is controller dependent, and need not be consistent for all
reserved fields.

Many controllers generate command end messages by simply
modifying the commands' command messages. That is, the
controller copies a command message into an internal buffer,
modifies it in place during execution of the command, then sends
the resulting contents of the internal buffer as the command's
end message. To simplify such an implementation, controllers may
merely "echo" command message reserved fields when the
corresponding field in the end message should be zero. More
precisely, if some field in the end message of a command should
be zero, and the corresponding (same position) field in the
command's command message is a reserved field, the controller may
copy the reserved field from the command message to the end
message rather than explicitly zeroing the field in the end
message.

The above paragraphs have listed all of the allowable controller
actions when a controller receives a command message with a
non-zero value in a reserved field. That is, when a controller
receives a command message with a non-zero value in a reserved
field it must do one of the following:

1. Reject the command as invalid and return an Invalid
Command end message.

2. Totally ignore the non-zero contents of the reserved
field. That is, the command's execution, results, and
end message contents are totally unaffected by the
non-zero value.

3. If the corresponding field in the end message should
have a zero value, echo the contents of the reserved
field in the command message as the value of the field
in the end message. In all other ways totally ignore
the non-zero contents of the reserved field. That is,
the command's execution, results, and the contents of

MSCP Control Message Formats
5.2 Reserved and Undefined Fields

all other fields in the end message are
unaffected by the non-zero value.

Page 5-5

totally

Note that option 3 is primarily of use when a field is reserved
in both command and end messages.

Note that controllers must implement option
internal functioning of the controller may
reserved field contains a non-zero value.

5.3 Transfer Command Message Format

1 whenever the
be altered if a

Although the parameters and their layout is command (opcode)
dependent, many commands perform data transfers and thus use
similar sets of parameters. Therefore data transfer related
parameters are always laid out as follows:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I
+--- descriptor ---+
I I
+-------------------------------+
I logical block number I
+-------------------------------+

where these parameters are interpreted as follows:

byte count

The total requested length of the data transfer in bytes.
For disk class devices, the "byte count" must meet the
requirements described in the next paragraph.

If the "logical block number" field identifies a logical
block in the host area of the disk volume (i.e., the "logical
block number" is less than the "unit size" returned in the
ONLINE and SET UNIT CHARACTERISTICS end messages), then the
"byte count" must be less than or equal to the following
maximum byte count:

(unit size - logical block number) * block size

MSCP Control Message Formats Page 5-6
5.3 Transfer Command Message Format

where "unit size" is the unit's host area size (returned in
the ONLINE and SET UNIT CHARACTERISTICS end messages),
"logical block number" is the contents of the "logical block
number" field in the command message, and "block size" is the
volume's block size, either 512 or 576 bytes. The controller
or MSCP server must check that the "byte count" is less than
or equal to the above maximum. That is, the controller or
MSCP server must reject any transfer command that begins in
the host area of a disk volume and attempts to continue into
the volume's Replacement and Caching Table (RCT). An
"Invalid Command" status code with an "Invalid Byte Count"
sub-code must be returned if this restriction is violated.

If the "logical block number" field identifies a logical
block in the disk volume's Replacement and Caching Table
(RCT) (i.e., the "logical block number" is greater than or
equal to the "unit size" returned in the ONLINE and SET ~IT
CHARACTERISTICS end messages), then the "byte count" must be
exactly the sector size (either 512 or 576 bytes). If a
different "byte count" value is provided, the controller may
either perform the transfer with the specified "byte count"
or else return an "Invalid Command" status code with an
"Invalid Byte Count" sub-code.

For all disk transfer commands that contain "buffer
descriptors" (i.e., all transfer commands except ACCESS and
ERASE), the "byte count" must also be less than or equal to
the size of the buffer identified by "buffer descriptor".
Note that "buffer descriptor", and thus the size of the
buffer, is inherently communications mechanism dependent.
The size of a buffer is not necessarily available to the MSCP
server until it attempts to transfer past the end of the
buffer. A "Host Buffer Access Error" status code is returned
if the "byte count" exceeds the length of the buffer. Note
that such errors are not necessarily distinguishable from
other causes of "Host Buffer Access Errors".

For disk transfer commands only, some communications
mechanisms may prohibit odd "byte count" values. A "Host
Buffer Access Error" status code is returned if the "byte
count" is an illegal odd byte count.

"Byte count" values that exceed any of the maximum values
described above may be detected either before the transfer is
initiated or when the transfer attempts to cross the boundary
from legal to invalid byte counts. If detected before the
transfer is initiated, the MSCP server must not transfer any
data and must return zero in the "byte count" field of the
end message. If detected when the transfer attempts to cross
the boundary, the MSCP server must transfer all data up to
the maximum legal byte count and return the maximum legal
byte count in the "byte count" field of the end message;
data must not be transferred past the maximum legal byte
count. Which algorithm an MSCP server uses for detecting

MSCP Control Message Formats Page 5-7
5.3 Transfer Command Message Format

byte counts that are too large is controller dependent.

buffer descriptor

Communication mechanism dependent identification of the host
buffer to use for the data transfer. The information encoded
in this 12 byte (96 bit) field includes:

o A host identifier (port or node identification).

o The name of a buffer on the host.

Note that the inclusion of a host identifier allows for third
party transfers. The buffer descriptor formats used by
various communication mechanisms are listed in Appendix D.

logical block number

The logical block number (position) on the disk volume at
which to start the data transfer. This value must not
identify a block past the end of the volume's Replacement and
Caching Table (RCT). Section "Disk Geometry and Format"
describes the mapping of logical block numbers to disk volume
regions. This error causes the command to be rejected with
an "Invalid Command" status code and an "Invalid Logical
Block Number" sub-code.

5.4 Command Modifiers

The allowable modifiers on a command are command (opcode)
dependent. The individual command descriptions list the
allowable modifiers for each command. All modifiers that are not
explicitly allowed for a command are reserved, and must be
treated in accordance with the requirements for reserved fields
described in Section "Reserved and Undefined Fields". Modifiers
that are only allowed on one command are described in that
command's description. Modifiers that are common to many
commands are described below:

Compare

Applicable to data transfer commands. After the transfer,
the data will be read back from the transfer destination and
verified against the original data re-obtained from the
source. Specifying this modifier is similar, but not
identical, to following the transfer command with a COMPARE
HOST DATA command. In particular, if the compare operation
fails, an error log message is generated (if enabled) and the
original transfer operation retried. (With the COMPARE HOST
DATA command, an error log message must not be generated on
compare errors and retries are unnecessary, although
innocuous and therefore allowable). See Section "Compare

MSCP Control Message Formats
5.4 Command Modifiers

Page 5-8

Operations", for a more detailed description of this
modifier's effects.

Express Request

Applicable to non-sequential commands. This modifier
requests that the controller ignore its normal optimization
policies in order to complete this command as quickly as
possible. The exact implementation of express requests is
controller dependent in general the controller will
complete some or all of its outstanding commands before
completing an express request.

Use of express requests disables the normal controller
guarantees that ensure that all commands are serviced in a
timely manner. If express requests are repeatedly issued,
some or all other outstanding commands may time out (i.e.,
never be completed).

Express requests do NOT override sequential command execution
guarantees. Some controllers may completely ignore the
express request modifier; the exact treatment of express
requests should be described in a controller's Functional
Specification.

Force Error

Applicable to write commands. Causes the data to be written
with the forced error indicator set, so that all attempts to
read the data will fail. The error will be preserved until
the next time the block is written. The forced errors
produced with this modifier must be recognized by the
controller as deliberate and never reported to the error log.

Suppress Error Correction

Suppresses error correction mechanisms, such as ECC
correction. Error recovery mechanisms, such as retries, are
not affected by this modifier. This modifier, in effect,
lowers the threshhold at which an error is considered to be
uncorrectable. It typically lowers the threshhold to zero,
although that is not required; since error correction is
drive type dependent, the lowered error correction threshhold
is also drive type dependent. If a drive has several error
correction me~hanisms, it is permissable for this modifier to
suppress some and not affect others.

Suppress Error Recovery

Suppresses most error recovery mechanisms, such as read
retries. Error correction mechanisms, such as ECC
correction, and some error recovery mechanisms, such as seek
retry, are not affected by this modifier. The exact
definition of which error recovery mechanisms are suppressed

MSCP Control Message Formats
5.4 Command Modifiers

and which are not affected is drive type dependent.

5.5 End Message Format

Page 5-9

An MSCP server sends an end message to a class driver to report
completion of a command. The generic end message format is as
follows:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--
I
+---
I

undefined
---+

I
---+

I
+-------------------------------+
I first bad block I
+-------------------------------+

The command reference number and unit number are copied from the
command message. The remaining fields are as follows:

endcode

Identifies this message as an end message and the type of
command (opcode) that this is an end message for. This field
implicitly specifies the format and interpretation of the
parameters.

flags

Bit flags, collectively called end flags, used to report
various conditions detected due to this command but not
directly related to success or failure. The following flags
are defined:

Bad Block Reported

Set if one or more bad blocks were detected. Indicates
that the host should replace the bad block identified in
the "first bad block" field.

Bad Blocks Unreported

MSCP Control Message Formats
5.5 End Message Format

Page 5-10

Set if one or more bad blocks were detected and not
reported in the "first bad block" field. That is, two or
more bad blocks were detected and the "first bad block"
field only reports the first bad block in the transfer.

Error Log Generated

Set if one or more error log messages were generated that
refer to this command i.e., that contain this
command's command reference number. This flag ailows the
host to save any outstanding command context that it
wishes to include in the error log. The MSCP server must
send the error log messages either before or shortly
after it sends the end message containing this flag.

All other bits in this field are reserved, and must be
treated in accordance with the requirements for reserved
fields described in Section "Reserved and ~defined Fields".

status

The modifiers field is used for a completion status code.
The status code indicates whether the operation was
successfully completed or, if it wasn't successful, what type
of error occurred. Note that recoverable errors are reported
as successful completion of the command. All errors, whether
recoverable or not, are reported in a separate error log
message if they should be logged.

If several errors occur in a transfer operation, the status
code reports the first error starting from the beginning of
the transfer (i.e., the lowest byte count or lowest logical
block number). The only exception is transfer commands that
include a compare operation (i.e., read-compare and
write-compare operations); errors in the original transfer
always take precedence over errors during the compare
operation.

If a "Forced Error" and some other error occur at the same
point (same byte count or logical block number) within a
transfer operation, the other error must be reported. If a
"Compare Error M and some other error which is not a "Forced
Error" occur at the same point within a transfer operation,
the other error must be reported. If a "Forced Error" and a
"Compare Error" both occur at the same point, and no other
error occurs at that point, the "Compare Error" must be
reported. Otherwise, which error of multiple errors
occurring at the same point should be reported is controller
dependent. An alternative way of stating this is that
"Forced Errors" are the error of last resort and that
"Compare Errors" are the error of second to last resort.

MSCP Control Message Formats
5.5 End Message Format

Page 5-11

If several errors occur in a non-transfer operation, the
error that is reported is controller dependent unless the
individual command description states otherwise.

byte count

In transfer command end messages, the number of bytes
successfully transferred, counting from the start of the
transfer to the first error (i.e., the lowest byte count or
lowest logical block number with an error). Data that
follows the first error is not counted, even if transferred
successfully. The only exception is transfer commands that
include a compare operation (i.e., read-compare and
write-compare operations); errors in the original transfer
always take precedence over errors during the compare
operation.

The controller must have successfully transferred all data up
to the point identified by "byte count". Furthermore, the
error identified by "status" must have actually occurred at
the position identified by "byte count". The state of the
transfer following the position identified by "byte count" is
undefined. None of the transfer following "byte count" may
have been performed or attempted, all of it may have been
attempted (with unknown success), or some parts may have been
attempted and others not.

Again, the only exception to this is transfer commands that
include a compare operation. Such a command makes two passes
over the data; one for the original transfer and another for
the compare operation. For most errors, there is no way to
determine in which pass the error was detected. Therefore
the only guarantee is that the original transfer was
performed up to the point identified by "byte count" without
detecting any errors; the compare operation mayor may not
have been performed up to that point. If a "Compare Error"
is reported, then both the original transfer and the compare
operation have been successfully performed up to the point
identified by "byte count"; the state of both the original
transfer and the compare operation after that point, however,
is undefined. This implies that the compare pass of a
transfer command that includes a compare operation may be
done for the entire transfer as a unit, block by block, or
anywhere in between.

For disk class devices, the granularity of the byte count on
errors (i.e., the resolution with which the point of error is
identified) need not be any smaller than the volume's block
size. That is, the byte count need only identify the block
in which the error occurred, rather than the exact word or
byte. In particular, the byte count returned with such
errors as "Compare Errors" and "Host Buffer Access Errors"
need only identify the block in which the error occurred,
rather than the exact word or byte. Note that a block is

MSCP Control Message Formats
5.5 End Message Format

Page 5-12

identified by the number of the first byte in the block.
Controllers may optionally provide finer granularity for the
byte count field on errors. If an error is not reported,
controllers must return the exact byte count that was in the
command message.

Not present in non-transfer command end messages.

first bad block

In disk transfer command end messages, the
number of the first bad block (i.e., the bad
lowest logical block number) detected during
that the host should replace. Only valid if
Reported" flag is set; undefined (garbage) if
Reported" flag is clear.

logical bloCK
block with the

the transfer
the "Bad Block
the "Bad Block

Not present in non-transfer command end messages.

5.6 Status Codes

The "status code" field is divided into a 5-bit major status code
and an II-bit status sub-code arranged as follows:

15
+-----------------+---------+
I sub-code I code I
+-----------------+---------+

The "event code" field of error log messages has the identical
structure and encoding. Errors that are reported in both an end
message and an error log message use identical values for the
"status code" and "event code" fields. The same value may not be
used to report a different type of event as a status code than as
an event code.

The 5-bit major status code conveys the status information that
hosts need for normal operation. Therefore the major status
codes are a formal part of MSCP. All controllers must return the
same major status codes for similar situations.

The II-bit sub-code exists to specify the exact error or unusual
situation encountered with very fine detail. As such it is
primarily used for diagnostic purposes, and hosts should not need
to examine it during normal operation.

Sub-codes related to protocol or state errors are a formal part
of MSCP. All controllers must return the same sub-codes for
protocol or state errors. These sub-codes are generally bit
flags, allowing several causes of the major status code to be
reported.

MSCP Control Message Formats
5.6 Status Codes

Page 5-13

Sub-codes related to controller and/or drive errors, however,
must be allowed to vary from one controller or drive to another.
There is no requirement that the same sub-codes be returned for
similar drive or controller errors. These sub-codes are
generally specific values, corresponding to one specific event or
error. Each sub-code must have the same meaning whenever it is
used. It is the use of a sub-code that may vary (i.e., whether
or not a specific controller returns that sub-code), not its
meaning. The defined sub-codes are listed in Appendix B; this
list may expand (via an ECO to MSCP) whenever a new drive or
controller type is introduced.

The major status codes that may be returned in end message
"status code" fields are listed below along with the general use
made of sub-codes. The actual sub-codes used are listed in
Appendix B. Those sub-codes that are a formal part of MSCP are
also listed in the descriptions of the commands that may return
them.

Success

The command was successfully completed. This status code may
also be returned, for some commands, if the intended effect
of the command has already been accomplished (i.e.,
requesting a drive that isn't spinning to spin-down). The
sub-code consists of bit flags used to report various
"alternate" forms of success; see the individual command
descriptions for details.

The status code value associated with "Success" is, by
definition, zero. Sub-code value zero (i.e., no sub-code
bits set) is "Normal" success, and implies normal completion
of a command. One sub-code bit, the "Duplicate ~it Number"
bit, is common to many commands. This bit, when set, implies
that the unit is "~it-Online" and the command succeeded, but
that the unit has a duplicate unit number. The unit will
become "~it-Offline", due to the duplicate unit number, as
soon as it ceases to be "Unit-Online". Other "Success"
sub-code bits are unique to a particular command, and are
described under the individual command descriptions.

Invalid Command

This status code is used for two purposes:

1. In normal command end messages, it is used to report
invalid parameter values (e.g., bad logical block
number). Some controllers may not detect certain invalid
parameters until after performing some part of the
command. For example, a byte count that runs past the
end of a disk may not be detected until the transfer has
been performed up to the end of the disk.

MSCP Control Message Formats
5.6 Status Codes

Page 5-14

2. In the Invalid Command End Message, it is used to report
invalid MSCP commands (protocol errors). A command is
invalid if some field contains a reserved value or the
command message was too short to contain all the
parameters required by the opcode.

Note that an unknown unit number does not constitute an
invalid parameter or command; unknown unit numbers are
treated as if the unit is "Unit-Offline".

The sub-code is used to report the offset, within the command
message, of the field in error. Bits 8 through 15 (the high
byte) of the "status code" field contain the byte offset from
the start of the message to the field in error. Multi-byte
fields are identified by the offset to their lowest byte.
Single byte fields positioned at an odd offset may be
identified, at the controller's option, by either their
actual offset or their offset minus one. That is, offsets
may be truncated to an even value. Sub-code zero is used to
report that the command message was too short to contain the
parameters required by the command's opcode. Note that any
value is valid for the field at offset zero, the "command
reference number".

Note that protocol errors, reported via this status code and
the Invalid Command end message, may cause the MSCP server to
become "Controller-Available" relative to the class driver
that issued the invalid command.

Command Aborted

The command was aborted by an ABORT command. The end message
for the aborted command (i.e., the end message containing the
"Command Aborted" status code) has the normal format for the
command and all fields are valid. In particular, the "byte
count" field identifies how far a transfer command was
completed before it was aborted. The status of the transfer
beyond the returned byte count is undefined. Sub-codes are
not used.

Un i t-Offl i ne

The unit identified by the "unit number" field of the end
message is in the "Uni t-Offl ine" state. The sub-code
consists of bit flags that indicate why the unit is
"Uni t-Offl ine" • Note that there may be several reasons for
the unit being "Unit-Offline". If the sub-code is zero, it
implies that the unit is unknown -- i.e., the controller
knows of no unit with the specified unit number.

Uni t-Avai lable

The unit identified by the "unit number" field of the end

MSCP Control Message Formats
5.6 Status Codes

Page 5-15

message is in the "Unit-Available" state. The sub-code is
al ways zero.

Media Format Error

Only returned by the ONLINE command for disk class devices.
The volume mounted on the unit appears to be formatted
incorrectly, so that it must be reformatted (and all data
lost) before it may be used. This error is also returned if
the volume is formatted with 576 byte sectors and the
controller only supports 512 byte sectors. Note that the
volume may only "appear" to be formatted incorrectly; the
typical cause of this error is a fault in the drive's
read/write electronics. If this is the case, the volume can
usually be successfully accessed on another drive.

Controllers must treat the unit as if an AVAILABLE command
with the "Spin-down" modifier set had been issued for it
whenever they return this error code. The unit is therefore
al ways in the "Uni t-Avai lable" state wi th AVAILABLE attention
messages suppressed until a human operator changes the volume
or spins-up the unit. The sub-code reports which integrity
check the volume failed; it is volume format, and therefore
drive type~ dependent.

Write Protected

The unit identified by the "unit number" field of the end
message is write protected and the command required that data
be written onto the drive. The sub-code consists of bit
flags indicating the reasons why the unit is write protected.

Compare Error

A COMPARE HOST DATA command, a read compare operation, or a
write compare operation found different data in the host
buffer and the unit identified by the "unit number" field of
the end message. The sub-code is always zero.

Data Error

Invalid or uncorrectable data was obtained from a drive, as
determined by internal error detecting or correcting codes.
The sub-code is used to report the exact error detected.
Sub-code zero is used for "Forced Errors". All errors caused
by the "Force Error" modifier must be reported with sub-code
zero.

Host Buffer Access Error

The controller encountered an error when attempting to access
a buffer in host memory. The sub-code is used to report the
exact error encountered. This status code is also returned
whenever the command's buffer descriptor or byte count

MSCP Control Message Formats
5.6 Status Codes

Page 5-16

violate any communications mechanism dependent restrictions.

Note that this status code is NOT used to report errors
encountered when transferring command, end, attention, or
error log messages between the controller and a host. Such
errors are reported by terminating the connection between the
class driver and MSCP server. The mechanism for reporting
such errors to the host's error log is communications
mechanism dependent.

Controller Error

The controller encountered an internal controller error. The
sub-code is used to report the exact error encountered. An
internal controller error is reported as a "Controller Error"
if and only if the controller has reasonable grounds to trust
its sanity and expects to complete, either successfully or
with an appropriate error status code, all of its outstanding
commands. All more severe controller errors are reported by
terminating the connection between the controller's MSCP
server and the host class driver. This is in addition, of
course, to attempting to generate an error log message.

Sub-code zero of this status
detected command timeouts;
controller dependent.

code
all

is reserved for host
other sub-codes are

Note that some controller errors may be reported using other
error codes, if an internal controller error causes the
controller to mis-diagnose the error.

Drive Error

The controller discovered an error within a drive. Such
errors are typically, but not always, mechanical in nature,
since most non-mechanical errors are reported as "Data
Errors". The sub-code is used to report the exact error
encountered.

In many cases a "Drive Error" will indicate that the unit is
broken or inoperative. If this occurs, the "Drive Error"
should be reported once and the unit should subsequently be
reported as being "Unit-Offline" due to being inoperative.

The status codes that may be returned for a specific command are
command (opcode) dependent. The status codes that may be
returned for each command and any special meaning that they have
specific to the command are listed in the command descriptions.
Note that the format of a command's end message is solely
determined by its opcode; the status code returned in the end
message does not affect the end message's format. The only two
exceptions, protocol errors and serious exceptions, have unique
end messages that contain a special opcode.

MSCP Control Message Formats
5.7 Unit Flags

5.7 Unit Flags

Page 5-17

Several messages contain a field called the unit flags field.
This field consists of unit characteristics bit flags. Some unit
flags are host settable; host settable unit flags may be set or
cleared with the ONLINE and SET UNIT CHARACTERISTICS commands.
Other unit flags are non-host settable; the controller must
ignore the values supplied by hosts for such flags, and always
return the correct value from the unit's characteristics. A few
unit flags may be host settable or non-host settable, depending
on the presence or absence of a command modifier.

Many unit flags, including all host settable unit flags, are only
valid when the unit is "Unit-Online". The values returned for
such unit flags are undefined if the unit is "Unit-Offline" or
"Unit-Available". A few non-host settable unit flags are valid
when the uni t is "Uni t-Avai lable" and dur ing certain
"Unit-Offline" sub-states; these flags are identified in the
individual flag descriptions below.

Those bits in the "unit flags" word that are not defined as unit
flags are reserved, and must be treated in accordance with the
requirements for reserved fields described in Section "Reserved
and Undefined Fields".

The unit characteristics flags are as follows:

Compare Reads

A host set table characteristic; set if all read transfers
should be verified with a compare operation. Equivalent to
specifying the "Compare" modifier on all READ commands.
Undefined when the unit is either "Unit-Available" or
" Un i t - 0 f f lin e" •

Compare Writes

A host settable characteristic; set if all write transfers
should be verified with a compare operation. Equivalent to
specifying the "Compare" modifier on all WRITE commands.
Undefined when the unit is either "Unit-Available" or
" Un i t - 0 f f lin e" •

Removable Media

A non-host settable characteristic; set if unit has
removable media. Valid whenever the controller can determine
the unit's characteristics; see the descriptions of the GET
UNIT STATUS, ONLINE, and SET UNIT CHARACTERISTICS commands
for more information.

MSCP Control Message Formats
5 • 7 Un i t Flag s

Write Protect (hardware)

Page 5-18

A non-host settable characteristic; set if and only if the
unit's write protect mechanism is activated, causing the unit
to be Hardware Write Protected. All write operations,
including attempts to perform bad block replacement or
otherwise modify the RCT, will be rejected when this flag is
set. See Section "Write Protection". Undefined when the
un i tis e i the r "Un i t - Ava i I a b 1 e " 0 r "Un i t - 0 f f lin e" •

Write Protect (software)

Normally a non-host settable characteristic; a host settable
characteristic if the "Enable Set Write Protect" command
modifier is asserted in the ONLINE or SET UNIT
CHARACTERISTICS commands. Set if and only if the unit is
Software Write Protected. See Section "Write Protection".
Undef ined when the unit is either " Uni t-Avai lable" 0 r
" Un i t - 0 f f 1 i n e" •

576 Byte Sectors

Normally a non-host settable characteristic; a host settable
characteristic if the controller supports 576 byte sectors
and the "Ignore Media Format Error" command modifier is
asserted in the ONLINE command. Set if the volume mounted on
the unit has 576 byte sectors. Undefined when the unit is
ei ther "Uni t-Avai lable" or "Uni t-Offline".

5.8 Controller Flags

The SET CONTROLLER CHARACTERISTICS command is used to set and
clear host settable controller flags, and to obtain the values of
non-host settable controller flags. Host settable controller
flags are stored on a per class driver basis; each class driver
may have different settings for host settable controller flags.
Non-host settable controller flags are fixed controller
characteristics# and therefore common to all class drivers of the
same device class. The controller must ignore the values
supplied by hosts for non-host settable controller flags, and
always return the correct value from the controller's
characteristics.

All host settable controller flags are, by default, clear
whenever a class driver becomes "Controller-Online" to an MSCP
server. The flags remain clear until the class driver sets them
with a SET CONTROLLER CHARACTERISTICS command or until the class
driver is no longer "Controller-Online" to the MSCP server.

MSCP Control Message Formats
5.8 Controller Flags

Page 5-19

Those bits in the "controller flags" word that are not defined as
controller flags are reserved, and must be treated in accordance
with the requirements for reserved fields described in Section
"Rese rved and Undef i ned Fi elds" •

The controller flags are as follows:

Enable Attention Messages

A host settable controller characteristic; set if attention
messages should be sent to this host. Note that this flag is
applicable to all attention messages, regardless of type.

Enable Miscellaneous Error Log Messages

A host settable controller characteristic; set if error log
messages that do not relate to a specific command should be
sent to this host.

Enable Other Hosts' Error Log Messages

A host settable controller characteristic; set if error log
messages that relate to commands issued by other hosts should
be sent to this host.

Enable This Host's Error Log Messages

A host settable controller characteristic; set if error log
messages that relate to commands issued by this host should
be sent to this host.

576 Byte Sectors

A non-host settable controller characteristic; set if the
controller supports disks formatted with 576 byte sectors.
Note that this flag is only applicable to the disk devic~
class.

CHAPTER 6

MINIMAL DISK MSCP SUBSET

This section first describes the unit and controller flags that
are used with the minimal Disk MSCP subset, then it describes
each command to which controllers must respond, and finally it
describes the attention messages that the controller must
generate. The controller must respond with the Invalid Command
end message and an "Invalid Opcode" status code to any command
that is not listed here.

Each command description includes the command's category or
execution order (see Section "Command Category and Execution
Order"), the command message format, a list of the allowable
command modifiers, the command's end message format, a list of
possible status codes, and a description of the command's
effects. Use of any command modifiers other than the ones listed
for an individual command is reserved, and must be treated in
accordance with the requirements for reserved fields described in
Section "Reserved and Undefined Fields".

6.1 This section deliberately omitted

Minimal Disk MSCP Subset Page 6-2

6.2 This section deliberately omitted

Minimal Disk MSCP Subset
6.3 ABORT Command

Page 6-3

6.3 ABORT Command

Command category:

Immediate

Command message format:

31 o
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I outstanding reference number I
+-------------------------------+

unit number

Must be the same as the "unit number" field in the
outstanding command to be aborted. This allows
controllers to optimize their search for the outstanding
command. If the incorrect unit number is supplied, some
controllers may erroneously conclude that the command is
no longer outstanding and therefore not abort the
command.

outstanding reference number

Command reference number of the command to be aborted.
Note that a class driver may only abort commands that it
itself has issued. This derives from the fact that
command reference numbers are implicitly qualified by the
connection on which the command was issued, so that class
drivers have no way of naming commands issued by a
different class driver.

Allowable modifiers:

none

Minimal Disk MSCP Subset
6.3 ABORT Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+-----~---------+-------+-------+

• I status I flags lendcodel
+---------------+-------+-------+
I outstanding reference number I
+-------------------------------+

outstanding reference number

Page 6-4

The command reference number of the command that was
aborted. Identical to the value supplied in the ABORT
command message.

Status Codes:

SIJccess (sub-code "Normal")

Description:

The ABORT command causes a specified command to be aborted at
the earliest time convenient for the controller. The
specified command must, however, either be aborted or be
completed within the controller timeout interval. See
Section "Command Timeouts" for a discussion of the
interaction between ABORT and command timeouts.

The ABORT command always succeeds; if the command to be
aborted is not known to the controller, this implies that it
has already completed and the ABORT command will be ignored.
The controller always returns the "Normal" status code in the
ABORT command's end message.

The controller may ignore the ABORT command if the command
being aborted will always complete within the controller
timeout interval.

The class driver must wait for the aborted command's end
message, or else re-synchronize with the MSCP server, before
reusing the aborted command's command reference number or
releasing the aborted command's context. If the command was
aborted, its end message will contain the "Command Aborted"
status code; otherwise the command was completed. The class
driver may ignore the ABORT command's end message. Note that
the class driver may receive the ABORT command's end message
either before or after the aborted command's end message.

Minimal Disk MSCP Subset
6.4 ACCESS Command

6.4 ACCESS Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I reserved I
+--- ---+
I I
+-------------------------------+
I logical block number I
+------------------------~------+

Allowable modifiers:

Express Request
Suppress Error Correction
Suppress Error Recovery

Page 6-5

Minimal Disk MSCP Subset
6.4 ACCESS Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I undefined I
+--- ---+
I I
+-------------------------------+
I first bad block I
+-------------------------------+

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")
Invalid Command (sub-code "Invalid Byte Count")

Page 6-6

Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Uni t-Of fl ine
Uni t-Avai lable
Data Error
Controller Error
Drive Error

De sc r i pt ion:

Data is read from the unit, checked for errors, and
discarded. The purpose of this command is to verify that the
designated data can be accessed (read) without error.

This command is exactly equivalent in function, although not
in performance, to a READ whose data is ignored by the host.

Minimal Disk MSCP Subset
6.5 AVAILABLE Command

6.5 AVAILABLE Command

Command category:

Sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcode I
+---------------+-------+-------+

Allowable modifiers:

Spin-down

Page 6-7

Requests that the disk stop spinning and that the heads
be unloaded. Note that the command completes as soon as
the spin-down has been initiated, rather than waiting for
the disk to stop spinning. The spin-down will not be
initiated if this unit belongs to a multi-unit drive and
this unit ~hares a spindle with some other unit that is
"Unit-Online"; see Section IIMulti-Unit Drives and
Formatters". Regardless of whether or not the spin-down
is actual~y initiated, AVAILABLE attention messages will
be suppressed for this unit, both for this controller and
for any other controllers to which the unit may be
connected; see Sect ion " Unit States".

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I s ta tus I flag s I endcode I
+---------------+-------+-------+

Minimal Disk MSCP Subset
6.5 AVAILABLE Command

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")

Success (sub-code "Spin-down Ignored")

Page 6-8

The "Spin-down Ignored" sub-code bit flag is set if and
only if the "Spin-down" modifier was specified and one or
more other units with which this unit shares a spindle is
still "Unit-Online", preventing this unit from spinning
down. See Section "Multi-unit Drives and Formatters" for
an explanation of shared spindles.

Success (sub-code "Still Connected")

The "Still Connected" sub-code bit flag is set if and
only if this unit may potentially be accessed via another
controller and one or more other units with which this
unit shares an access path is still "Unit-Online",
preventing this unit from being accessed via the other
controller (if any). The "Still Connected" sub-code bit
flag will always be set if the "Spin-down Ignored" bit
flag is set. See Section "Multi-access Drives" for a
discussion of access paths.

Command Aborted

The unit's state has not changed.

Uni t-Offline
Controller Error
Drive Error

De sc r i pt ion:

All outstanding commands for the specified unit are
completed, then the unit becomes "Unit-Available". If the
"Spin-down" modi fier was not specified, the unit is not
already "Unit-Available", and no other units that share this
unit's access path are "Unit-Online" (i.e., the "Still
Connected" status sub-code bit flag is clear), then an
AVAILABLE attention message is sent by any other controller
to which the unit is connected. The controller to which this
command was sent need not itself send an AVAILABLE attention
message.

If the "Spin-down" modifier is specified, the disk spins down
and its heads are unloaded, unless some other unit with which
this unit shares a spindle is "Unit-Online". The disk may be
spun up with an ONLINE command or by operator intervention.
The "Spin-down" modifier also suppresses AVAILABLE attention
messages for this unit, both for this controller and any

Minimal Disk MSCP Subset
6.5 AVAILABLE Command

other controllers to which the unit may be
Section "Unit States" for a discussion
AVAILABLE attention messages.

Page 6-9

connected. See
of suppressing

This command wi 11 be accepted if the uni t is II Uni t-Online ll or
"Uni t-Avai lable ll • It is nuga tory to issue th is command to a
unit that is "Unit-Available" unless the "Spin-downll modifier
is specified. Assuming no other errors occur, the IISuccess ll
status code will be returned regardless of whether the unit
was pre vi 0 u sl Y "Un i t - On 1 i n e " 0 r II Un i t - A va i 1 a b 1 ell.

If the unit was "Unit-Online" but had a duplicate unit number
prior to the AVAILABLE command being issued, the AVAILABLE
command may complete, at the controller's option, with either
a "Success" or a "Uni t-Offl ine" status code. The
"Unit-Offline" status code must have the "Duplicate lhit
Number" sub-code flag set. The "Success" status code mayor
may not, at the controller's option, have the "Duplicate Unit
Number" sub-code flag set. Subsequent attempts to access the
uni t wi 11 return "Uni t-Offl ine" status wi th the "Dupl icate
Uni t Number" sub-code flag set unless the dupl i cate uni t
number has been eliminated.

Minimal Disk MSCP Subset
6.5 AVAILABLE Command

6.6 This section deliberately omitted

Page 6-10

Minimal Disk MSCP Subset
6.7 COMPARE HOST DATA Command

6.7 COMPARE HOST DATA Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I

+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I

+--- descriptor ---+
I I

+-------------------------------+
I logical block number I
+-------------------------------+

Allowable modifiers:

Express Request
Suppress Error Correction
Suppress Error Recovery

Page 6-11

Minimal Disk MSCP Subset
6.7 COMPARE HOST DATA Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I undefined I
+--- ---+
I I
+-------------------------------+
I first bad block I
+-------------------------------+

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")
Invalid Command (sub-code "Invalid Byte Count")

Page 6-12

Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Unit-Offline
Unit-Available
Compare Error
Data Error
Host Buffer Access Error
Controller Error
Drive Error

Description:

Data is read from the unit and compared with the data in the
host buffer. A "Compare Error" is reported unless the data
is identical. Note that the occurence of any other error,
except a "Forced Error", at the same point as the "Compare
Error" will override the "Compare Error". Note also that any
"Compare Errors" detected by this command must NOT be
reported to the error log.

Minimal Disk MSCP Subset
6.8 DETERMINE ACCESS PATHS Command

6.8 DETERMINE ACCESS PATHS Command

Command Category:

see below

Command message format

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+

Allowable modifiers:

none

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I rsvd lendcodel
+---------------+-------+-------+

Status codes:

Success (sub-code "Normal")
Success (sub-code "Dupl i cate Uni t Numbe r")
Command Aborted
Uni t-Offline
Un it-Ava i lable
Controller Error
Dr ive Error

Description:

Page 6-13

Minimal Disk MSCP Subset Page 6-14
6.8 DETERMINE ACCESS PATHS Command

Class drivers use this command to determine the topology of
mUlti-access drive configurations. When sent to a unit that
is "Unit-Online", it causes that unit and any other units
that share its access path to identify themselves to any
other controller to which they are connected. The MSCP
servers in the other controllers will, as a result, become
aware that the unit is online via the controller receiving
this command. They will then send an ACCESS PATH attention
message to their "Controller-Online" class drivers, thus
informing the class drivers of the alternate access paths to
the unit. This command must be treated as a no-op that
always succeeds if the unit is incapable of being connected
to more than one controller.

The actual notification to another controller, and thus the
sending of an ACCESS PATH attention message, is dependent on
the proper functioning of the unit and both controllers.
Furthermore, it need not be 100% reliable. That is, assuming
the unit and both controllers are functioning properly, there
need only be a high probability (better than 50%) that the
other controller will in fact be notified and send an ACCESS
PATH attention message. For this reason, plus the fact that
the topology may change while the unit remains "~it-Online",
hosts that need to know multi-access drive topology must
issue DETERMINE ACCESS PATHS commands to all "Unit-Online"
units on a periodic basis, such as once every 5 to 15
minutes.

This command in no way affects the unit's actual state to any
controller. The unit remains "~it-Online" via the receiving
controller and remains "Unit-Offline" via other controllers.
Note, however, that this command may affect the unit's
"Unit-Offline" sub-state that is perceived by other
controllers.

The processing of this command may, and often will, cause a
transient performance degradation for the specified unit.
Controllers must consider this performance degradation when
specifying their controller timeout interval.

A controller may, at its option, treat this as either an
Immediate, Sequential, or Non-sequential command. Host
command timeout algorithms must treat this as a non-Immediate
command.

Minimal Disk MSCP Subset
6.9 ERASE Command

6.9 ERASE Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
1 command reference number I

+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I reserved I
+--- ---+
I I
+-------------------------------+
I· logical block number I
+-------------------------------+

Allowable modifiers:

Express Request
Force Error
Suppress Error Recovery

Page 6-15

Minimal Disk MSCP Subset
6.9 ERASE Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I undefined I
+--- ---+
I I
+-------------------------------+
I first bad block I
+-------------------------------+

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")
Invalid Command (sub-code "Invalid Byte Count")

Page 6-16

Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Unit-Offline
Un i t-Avai lable
Write Protected
Controller Error
Drive Error

De sc r i pt i on :

All data in the specified region of the unit is erased by
overwriting it with zero.

This command is exactly equivalent in function, although not
in performance, to a WRITE command which references a buffer
that the host has zeroed.

Minimal Disk MSCP Subset
6.9 ERASE Command

6.10 This section deliberately omitted

Page 6-17

Minimal Disk MSCP Subset Page 6-18
6.11 GET COMMAND STATUS Command

6.11 GET COMMAND STATUS Command

Command category:

Immediate

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+--------~------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I outstanding reference number I
+-------------------------------+

unit number

Must be the same as the "unit number" field in the
outstanding command whose status is to be obtained. This
allows controllers to optimize their search for the
outstanding command. If the incorrect unit number is
supplied, some controllers may erroneously conclude that
the command is no longer outstanding, leading to
erroneous command timeouts.

outstanding reference number

The command reference number of the command whose status
is to be obtained. Note that a class driver may only
obtain the status of commands that it itself has issued.
This derives from the fact that command reference numbers
are implicitly qualified by the connection on which the
command was issued, so that class drivers have no way of
naming commands issued by a different class driver.

Allowable modifiers:

none

Minimal Disk MSCP Subset Page 6-19
6.11 GET COMMAND STATUS Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I outstanding reference number I
+---------------+---------------+
I command status I
+~--------------+---------------+

outstanding reference number

The command reference number of the command whose status
has been returned. Identical to the value supplied in
the GET COMMAND STATUS command message.

command status

The amount of work remaining to be done to complete the
command, expressed as an unsigned integer. This field is
zero if the command is not known to the controller, such
as when the command has already completed. This field
should also be zero if the command has been aborted. The
controller may also return zero in this field if it can
guarantee that the command will complete within the
controller timeout interval. The controller must never
return a value of all ones (2**32-1) in this field, as
that value is used to initialize the command timeout
algorithm.

The units in which this value is measured are arbitrary
and may be controller, device type, and/or command
dependent. However, the units must remain the same for a
particular command for as long as that command is
outstanding.

Status Codes:

Success (sub-code "Normal")

Description:

The GET COMMAND STATUS command is used to monitor the
progress of a command towards completion. The command status
measures the "doneness" of the command; the command status
field is guaranteed to not increase over time. Furthermore,
the command status of an MSCP server's oldest outstanding

Minimal Disk MSCP Subset Page 6-20
6.11 GET COMMAND STATUS Command

command is guaranteed to decrease within the controller
timeout interval. This last feature may be used by a host
class driver to detect an insane or malfunctioning
controller; see Section "Command Timeouts" for more details.

The GET COMMAND STATUS command always succeeds. If the
command referenced by the "outstanding reference number" is
not known to the MSCP server or has been aborted, then the
MSCP server should return zero for its command status. The
MSCP server may also return zero as the command status of any
command that will always complete within the controller
timeout interval. The MSCP server always returns the
"Normal" status code in the GET COMMAND STATUS command's end
message.

Minimal Disk MSCP Subset Page 6-21
6.12 GET UNIT STATUS Command

6.12 GET UNIT STATUS Command

Command category:

Immediate

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcode I
+---------------+-------+-------+

Allowable modifiers:

Next lbit

Requests that the controller return the status of the
next unit (in order of ascending unit numbers) that the
controller knows to exist and whose unit number is
greater than or equal to the unit number specified in the
command. See Section "Unit States", for a detailed
definition of which units must be acknowledged by this
modifier.

If this modifier is specified, the "unit number" field in
the end message corresponds to the unit whose
characteristics are being returned, and is typically not
the same as the "unit number" field in the command
message. If there are no units that are both known to
the controller and whose unit numbers are greater than or
equal to the unit number specified in the command
message, then zero is returned in the "unit number" field
of the end message. The remaining fields of the end
message are identical to the values that would be
returned for a GET ~IT STATUS command wi th a "uni t
number" of zero and the "Next Uni t" mod if ier left
unspecified.

Minimal Disk MSCP Subset Page 6-22
6.12 GET UNIT STATUS Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I unit flags Imulti-unit codel
+---------------+---------------+
I reserved I
+-------------------------------+
I I
+--- unit identifier ---+
I I
+-------------------------------+
I media type identifier I
+---------------+---------------+
I reserved I shadow unit I
+---------------+---------------+
I group size I track size I
+---------------+---------------+
I reserved I cylinder size I
+-------+-------+---------------+
Icopies I RBNs I RCT size I
+-------+-------+---------------+

The validity of the unit characteristics returned by this
command varies with the unit's state. Class drivers can
determine which characteristics are valid by examlnlng the
values returned in the "status" and "unit identifier" fields.
See the description below.

status

Encodes the cur rent uni t sta te (" Un it-Of fl ine" ,
"Uni t-Available", "Uni t-Online") • See status codes
listed below.

multi-unit code

The low byte of this field identifies the access path
between the controller and the unit. The high byte of
this field identifies the spindle, within the access
path, to which the unit belongs. See Section "Multi-unit
Drives and Formatters" for more information.

unit flags

See Sect ion "Un i t Flags" unde r "MSCP Control Message
Formats"

Minimal Disk MSCP Subset Page 6-23
6.12 GET UNIT STATUS Command

unit identifier

Uniquely identifies the unit among all devices accessible
v i a MSC P ; se e Sec t ion " Con t roll e r an d Un i tId e n t i fie r s" •

media type identifier

Identifies the type of media used by this unit, for use
by host generic device allocation mechanisms; see
Section "Media Type Identifiers".

shadow unit

Always identical to the "unit number" field.

track size

The number of logical blocks in a track, or zero if the
concept of a track is inappropriate to this unit; see
Section "Disk Geometry and Format".

group size

The number of tracks in a group, or zero if
of a group is inappropriate to this unit;
"Disk Geometry and Format". Note that this
always be zero whenever "track size" is zero.

the concept
see Section
value must

cylinder size

The number of groups in a cylinder, or zero if the
concept of a cylinder is inappropriate to this unit; see
Section "Disk Geometry and Format". Note that this value
must alway be zero whenever "group size" is zero.

RCT size

RBNs

The difference between the starting logical block numbers
of successive copies of the unit's Replacement and
Caching Table (RCT). Excepting only the last copy, this
value is also the size of each copy of the RCT. See DEC
Standard Disk Format.

The number of replacement blocks per track. Note that
this is the total number of replacement blocks on the
unit if "track size" is zero, since then the entire unit
is a single track. See DEC Standard Disk Format.

copies

The number of copies of the Replacement and Caching Table
that are stored on the unit. See DEC Standard Disk

Minimal Disk MSCP Subset Page 6-24
6.12 GET UNIT STATUS Command

Format.

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")

Both of these codes imply that the unit is "Unit-Online".

Uni t-Of fl ine
Un it-Ava i la ble

Controller Error
Dr ive Error

For both of these codes the class driver should assume
that the unit is "Uni t-Offline".

Description:

The GET UNIT STATUS command returns the current state of a
unit plus certain unit characteristics. In particular, the
GET UNIT STATUS command is used to obtain host set table
characteristics and those fixed unit characteristics that are
not normally needed by the class driver.

Class drivers can determine which of the returned unit
characteristics are valid by examining the returned "status"
and "unit identifier" fields. The following cases exist:

1 • "status" is "Success", implying that the
"Unit-Online". All characteristics are valid.

unit is

2 • " s tat us" is" Un i t - A va i I a b Ie" 0 r "Un i t - 0 f f lin e It an d " un i t
identifier" is not zero. All unit flags except for the
"Removable media" flag are undefined. All other
characteristics are valid.

3. "unit identifier"
characteristic is
undefined.

is zero. Only the "shadow unit"
valid. All other characteristics are

The three cases listed above are the only cases that can
occur.

Rather than testing the entire quadword unit identifier, it
is sufficient to merely test the high order word of the unit
identifier, containing the class and model code bytes, to see
if it is zero or not.

Minimal Disk MSCP Subset Page 6-25
6.12 GET UNIT STATUS Command

Controllers must supply valid values for all characteristics
whenever the unit is "Uni t-Online". Controllers must supply
a non-zero unit identifier and valid values for all
characteristics except those noted above whenever the unit is
"Un i t-Avai lable" or the un it is "Un i t-Offl ine" solely due to
being disabled or known. Controllers mayor may not, at the
controller's option, provide valid characteristics when the
uni t is "Uni t-Offl ine" for any other reason.

The rules in the above paragraphs can be restated as follows:

1. If "status" is "Success", then "unit identifier" must be
non-zero and all characteristics must be valid.

2 • If" s tat us " is" Un i t - A va i I a b 1 e", the n " un i tid en t i fie r "
must be non-zero and almost all characteristics must be
valid.

3. If "status" is "Unit-Offline" and the sole causes of the
unit being offline are it being disabled or known, then
"unit identifier" must be non-zero and almost all
characteristics must be valid.

4. If "unit identifier" is zero, then "status" must either
be "Unit-Offline" with some reason other than the the
unit being disabled or known indicated, or "status" must
be "Controller Error" or "Drive Error". Virtually no
characteristics need be valid.

Minimal Disk MSCP Subset
6.13 ONLINE Command

6.13 ONLINE Command

Command categories:

Sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcode I
+---------------+-------+-------+
I unit flags I reserved I
+---------------+---------------+
I reserved I
+-------------------------------+
I I
+--- reserved ---+
I I
+-------------------------------+
I device dependent parameters I
+---------------+---------------+
I reserved I reserved I
+---------------+---------------+

unit flags

Page 6-26

Host settable unit flags; see Section "Unit Flags" under
"MSCP Control Message Formats"

If the unit is already "Unit-Online" to the class driver,
then the class driver must specify the same values for
controller supported host settable unit flags as are
currently in effect on the unit. The controller mayor
may not, at its option, check that the flag values are
the same. If it does check, then it must return an
"Invalid Command" status code with "Invalid Unit Flags"
sub-code if they are different. If the controller does
not check that they are the same, then it must ignore the
unit flags specified by the class driver and preserve the
flag settings currently in effect on the unit. Note that
this checking becomes mandatory, rather than optional, if
the controller provides Multi-host Support.

device dependent parameters

Device and/or controller dependent device tuning

Minimal Disk MSCP Subset
6.13 ONLINE Command

Page 6-27

parameters. The value zero in this field means that
default or normal tuning parameters should be used.
Non-zero values for this field should normally be
established through the system startup command file.
Examples of the use of this field include selecting
alternative optimization algorithms or enabling and
disabling automatic (online) diagnosis of the unit.

Allowable modifiers:

Allow Self Destruction

Some controllers and/or drives are able to predict that a
unit is in danger of imminent self destruction, and
automatically spin-down and disable the unit to prevent
its destruction. Such mechanisms typically sense an
exponentially increasing (correctable) error rate,
indicating that the disk surface has been contaminated
with dust or other foreign objects. Units that have been
disabled for this reason appear to be II Uni t-Offline",
with a sub-code indicating that they have been disabled
by field service or a diagnostic. Therefore such a unit
cannot normally be brought " Unit-Online" •

This modifier allows a host to bring a unit that has been
so disabled "Unit-Online", even though the consequences
for the unit may be fatal. For this reason THIS MODIFIER
MUST NEVER BE USED UNLESS FIELD SERVICE EXPLICITLY
DIRECTS A SITE TO DO SO. When imminent self destruction
has been predicted for a unit, it is usually possible to
make one "last ditch" copy of the unit before it dies
completely, recovering all or most of the data on the
unit. This modifier exists primarily to simplify support
of such a "last ditch" copy. This modifier also provides
a means, if necessary, to work around a diagnostic that
is erroneously disabling a unit.

This modifier must be supported by:

1. Any controller that may disable a unit for the reason
mentioned above.

2. Any controller that may potentially be connected to a
unit that can disable itself.

3. Any controller that does not disable units
but that will respond properly if a drive is
by some other (more capable) controller.

itself,
disabled

This modifier must be ign~red if the unit has not been
disabled or if the controller does not fall into any of
the above categories.

Minimal Disk MSCP Subset
6.13 ONLINE Command

Ignore Media Format Error

Page 6-28

Suppresses most checking for "Media Format Errors" and
causes the "576 Byte Sectors" unit flag to be host
settable.

The controller uses the state of the "576 Byte Sectors"
unit flag to determine whether the volume is formatted
-with 512 or 576 byte sectors, rather than determining the
volume's format from the volume itself. The "576 Byte
Sectors" unit flag will be ignored by the controller, and
returned clear, if either the controller or the unit do
not support 576 byte sectors.

Use of this modifier allows the host to set a unit to the
wrong block or sector size. Reading a unit that is set
to the wrong block or sector size may yield a mix of
erroneous "Data Errors", "Drive Errors", and "Controller
Errors". Writing a unit that is set to the wrong block
or sector size may permanently corrupt the volume; the
volume must be re-formatted if this occurs.

;Enable Set Write Protect

Causes the "Write Protect" unit flag to be host settable.
This modifier causes the state of the "Write Protect
(software)" unit flag to be copied to the Software Write
Protect flag for this unit; see Section "Write
Protection".

Minimal Disk MSCP Subset
6.13 ONLINE Command

End message format:

31
+-------------------------------+
, command reference number I
+---------------+---------------+
, reserved 'unit number I
+---------------+-------+-------+
, S ta tus ,flag s I endcode I
+---------------+-------+-------+
, unit flags 'multi-unit codel
+---------------+---------------+
I reserved ,
+-------------------------------+
I I
+--- unit identifier ---+
I I
+-------------------------------+
, media type identifier I
+---------------+---------------+
I reserved I reserved I
+---------------+---------------+
I unit size I
+-------------------------------+
I volume serial number I
+-------------------------------+

Page 6-29

The format and fields of the ONLINE command's end message are
identical to the SET UNIT CHARACTERISTICS command's end
message; see the field descriptions under that command. The
validity of the unit characteristics returned by this command
varies with the unit's state. Class drivers can determine
which characteristics are valid by examining the values
returned in the "st~tus" and "unit identifier" fields.

Status Codes:

Success (sub-code "Normal")

Success (sub-code "Already Online")

The "Already Online" sub-code bit flag is set if and only
if the unit is already "Unit-Online" to the requesting
class driver; the unit's state and characteristics are
not al tered. When the uni t is al ready "Uni t-Onl ine" to
the requesting class driver, the controller merely
returns the unit characteristics in the end message with
this status bit flag set, without performing any other
actions.

Invalid Command (sub-code "Invalid Unit Flags")

The uni t is al ready "Uni t-Onl ine" and, for those uni t
flags that are both host settable and supported by the

Minimal Disk MSCP Subset
6.13 ONLINE Command

Page 6-30

controller, the class driver has specified different
values from those currently in effect on the unit. The
unit remains "Unit-Online"; the host settable unit flags
are not changed. Controllers that do not provide
Multi-host Support may, at their option, omit checking
that the unii flags are the same. Such a controller must
ignore the class driver specified unit flags for units
that are al ready It Uni t-Onl ine" , thus returning a
"Success" status code with "Already Online" sub-code.

Command Aborted

The unit's state is un-changed. The host must assume
that the returned unit characteristics are invalid.

Un i t-Offl i ne

Note that some causes of a unit being "Unit-Offline" may
be overridden (suppressed) by the "Allow Self
Destruction" command modifier.

Media Format Error

The unit is and remains "Unit-Available". However,
attention messages are suppressed for this unit and the
controller attempts to spin-down this unit exactly as if
an AVAILABLE command with the "Spin-down" modifier set
were issued. Note, however, that this error will be
suppressed and the uni t brought "Uni t-Onl i ne" anyway if
the "Ignore Media Format Error" command modifier is set.
See the modifier description above.

Controller Error

The host should assume the unit is "Unit-Offline".

Drive Error

The unit is "Unit-Offline" due to being inoperative. The
controller must suppress AVAILABLE attention messages for
the unit and attempt to spin-down the unit, exactly as if
an AVAILABLE command with the "Spin-down" modifier set
were issued for the unit. The controller may
subsequently report the unit as being either
"Unit-Offline" or "Unit-Available"; generally the
reported unit state will depend upon exactly how the unit
is "broken", and the interactions of the failure with the
controller's perception of the unit's state.

Description:

Minimal Disk MSCP Subset
6.13 ONLINE Command

Page 6-31

The ONLINE command is used to bring a unit "Unit-Online", set
host settable unit characteristics, and obtain those unit
characteristics that are essential for proper class driver
operation. The unit is spun-up, if necessary, and its heads
are loaded prior to returning the ONLINE command's end
message. Host settable characteristics are set exactly as if
a SET UNIT CHARACTERISTICS command were issued; see the
description of that command. Host settable characteristics
are set after the unit has been successfully spun-up and any
other validity checks have succeeded. Note that the unit's
host settable characteristics are NOT altered if the unit is
already " Unit-Online".

The class driver must invoke a process that will access the
unit's Replacement and Caching Table to determine if a bad
block replacement operation has been partially performed or
if the unit must be write protected. The details of this
check and its consequences are described in Section "Bad
Block Replacement" and DEC Standard Disk Format.

Note that the format of the ONLINE command's end
identical to the SET UNIT CHARACTERISTICS
message.

message is
command's end

Minimal Disk MSCP Subset
6.14 READ Command

6.14 READ Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I mod i f i ers I rsvd I opcode I
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I
+--- descr ipto r ---+
I I
+-------------------------------+
I logical block number I
+-------------------------------+

Allowable modifiers:

Compare
Express Request
Suppress Error Correction
Suppress Error Recovery

Page 6-32

Minimal Disk MSCP Subset
6.14 READ Command

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- ---+
I undefined I
+--- ---+
I I
+-------------------------------+
I first bad block I
+-------------------------------+

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")
Invalid Command (sub-code "Invalid Byte Count")

Page 6-33

Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Uni t-Offl ine
Un i t-Avai lable
Compare Error
Data Error
Host Buffer Access Error
Controller Error
Dr ive Error

Description:

Data is read from the unit and transferred to the host
buffer.

Minimal Disk MSCP Subset
6.15 REPLACE Command

6.15 REPLACE Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I replacement block number I
+-------------------------------+
I I
+---
I
+--
I

reserved
---+

I
---+

I
+-------------------------------+
I logical block number I
+-------------------------------+

replacement block number

Page 6-34

Identifies the replacement block that has been allocated
to replace the bad logical block.

logical block number

Identifies the bad logical block that is being replaced.

Allowable modifiers:

Express Request

Primary Replacement Block

Must be set if and only if the "replacement block number"
specifies the primary replacement block for "logical
block number". That is, must be set if and only if the
following expression is true:

replacement block number =
logical block number / track size * RBNs

Minimal Disk MSCP Subset
6.15 REPLACE Command

Page 6-35

where "track size" and "RBNs" are unit characteristics
obtained via the GET UNIT CHARACTERISTICS command and "I"
denotes integer (truncating) division. See DEC Standard
Disk Format for more information. Note that this
modifier is redundant information provided for the
convenience of the controller.

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Dupl i cate Uni t Numbe r")
Invalid Command (sub-code "Invalid Replacement Block Number")
Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Uni t-Offline
Unit-Available
Write Protected
Controller Error
Drive Error

De sc rip t ion:

The specified logical block is flagged to indicate that it
has been replaced with the specified replacement block. The
volume's Replacement and Caching Table must have been updated
prior to using this command, and the replacement block should
be initialized with a write command to the same logical block
number after using this command. See Section "Bad Block
Replacement" and DEC Standard Disk Format for more
information on the use and function of this command.

Minimal Disk MSCP Subset Page 6-36
6.16 SET CONTROLLER CHARACTERISTICS Command

6.16 SET CONTROLLER CHARACTERISTICS Command

Command category:

Immediate

Command message format:

31 o
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I reserved I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I cntrlr. flags I MSCP version I
+---------------+---------------+
I reserved I host timeout I
+---------------+---------------+
I quad-word I
+--- ---+
I time and date I
+-------------------------------+

MSCP version

Host class drivers must supply the value zero in this
field. MSCP servers must verify this value and, if it is
not zero, return an Invalid Command end message. This
value will be incremented if MSCP is ever modified in a
way that is not upwards compatible.

cntrlr. flags

Host settable controller flags; see Section "Controller
Flags" under "MSCP Control Message Formats"

host timeout

The time interval that the controller should use for the
host access timeout with this host, or zero if the
controller should disable the host access timeout for
this host. Expressed as an unsigned binary integer in
units of seconds. Controllers should use a default host
access timeout of 60 seconds if they have not received a
SET CONTROLLER CHARACTERISTICS command since becoming
"Controller-Online".

Minimal Disk MSCP Subset Page 6-37
6.16 SET CONTROLLER CHARACTERISTICS Command

Even though this is a sixteen bit field, controllers may
treat all values greater than 255 as if 255 had been
specified, and all values between 1 and 9 as if 10 had
been specified. See Section "Host Access Timeouts" for a
description of host access timeouts.

quad-word time and date

The current time and date, expressed as the number of
clunks since 00:00 o'clock, November 17, 1858 (in the
local time zone), or zero if the current time and date is
not available. A clunk is 100 nanoseconds. This is the
standard VAX/VMS time and date format. The use that is
made of the current time and date and the action taken if
it is not supplied (i.e., if zero is supplied) is
controller dependent, and should be described in each
controller's Functional Specification. Controllers must
not require that a time and date be supplied for proper
operation.

Allowable modifiers:

none

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I reserved I
+---------------+-------+-------+
I status I flags /endcodel
+---------------+-------+-------+
I cntrlr. flags I MSCP version I
+---------------+---------------+
I reserved Icntr1r. timeoutl
+---------------+---------------+
I I
+--- controller identifier
I

---+
I

+---------------+---------------+
cntrlr. flags

See Section "Controller Flags" under "MSCP
Message Formats"

cntrlr. timeout

Control

The controller timeout interval;
time that the controller needs

the minimum amount of
to guarantee it will

Minimal Disk MSCP Subset
6.16 SET CONTROLLER CHARACTERISTICS Command

accomplish useful work on its oldest
Expressed as an unsigned binary
seconds. This value must not exceed
though a sixteen bit field has
Section "Command Timeouts".

controller identifier

Page 6-38

outstanding command.
integer in units of
255 (one byte), even
been provided. See

Uniquely identifies the
accessible via MSCP.
Identifiers".

controller among all devices
See Sect ion "Contro ller and Uni t

Status Codes:

Success (sub-code "Normal")

Description:

The SET CONTROLLER CHARACTERISTICS command is used to set and
obtain controller characteristics. The default value for
"cntrlr. flags" is all flags clear (i.e., all messages
disabled); the default value for "host timeout" is 60
seconds. These default values are used from the time that
the controller becomes "Controller-Online" to a host until it
stops being "Controller-Online" or until the host issues a
SET CONTROLLER CHARACTERISTICS command.

Minimal Disk MSCP Subset
6.17 SET UNIT CHARACTERISTICS Command

6.17 SET UNIT CHARACTERISTICS Command

Command category:

Sequential

Command message format:

unit flags

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I unit flags I reserved I

+---------------+---------------+
I reserved I
+-------------------------------+
I I
+--
I

reserved ---+
I

+-------------------------------+
I device dependent parameters I
+---------------+---------------+
I reserved I reserved I

+---------------+---------------+

Page 6-39

Host settable unit flags; see Section "Unit Flags" under
"MSCP Control Message Formats"

device dependent parameters

Device and/or controller dependent device tuning
parameters. The value zero in this field means that
default or normal tuning parameters should be used.
Non-zero values for this field should normally be
established through the system startup command file.
Examples of the use of this field include selecting
alternative optimization algorithms or enabling and
disabling automatic (online) diagnosis of the unit.

Allowable modifiers:

Enable Set Write Protect

Minimal Disk MSCP Subset Page 6-40
6.17 SET UNIT CHARACTERISTICS Command

Causes the "Write Protect" unit flag to be host settable.
This modifier causes the state of the "Write Protect
(software)" unit flag to be copied to the Software Write
Protect flag for this uni t; see Section "Wr i te
Protection".

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags lendcodel
+---------------+-------+-------+
I unit flags Imulti-unit codel
+---------------+---------------+
I reserved I
+-------------------------------+
t I
+--
I

unit identifier ---+
I

+-------------------------------+
I media type identifier I
+---------------+---------------+
I reserved I shadow unit I
+---------------+---------------+
I unit size I
+-------------------------------+
I volume serial number I
+-------------------------------+

The validity of the unit characteristics returned by this
command and the ONLINE command varies with the unit's state.
Class drivers can determine which characteristics are valid
by examInIng the values returned in the "status" and "unit
identifier" fields. See the description below.

multi-unit code

The low byte of this field identifies the
between the controller and the unit. The
this field identifies the spindle, within
path, to which the unit belongs. See Section
Drives and Formatters", for more information.

unit flags

access path
high byte of

the access
"Mul t i- Uni t

See Section "Unit Flags" under "MSCP Control Message
Formats"

unit identifier

Minimal Disk MSCP Subset Page 6-41
6.17 SET UNIT CHARACTERISTICS Command

Uniquely identifies the unit among all devices accessible
v i a M S C p ; see Sec t ion " Con t roll e r an d Un i tId e n t i fie r s" •

media type identifier

Identifies the type of media used by this unit, for use
by host generic device allocation mechanisms; see
Section "Media Type Identifiers".

shadow unit

Always identical to the "unit number" field.

unit size

The number of logical blocks in the host area of this
.unit. This value does NOT include the logical block
range occupied by the unit's Replacement and Caching
Table. The logical block number of the first block of
the unit's Replacement and Caching Table is equal to this
va 1 ue •

volume serial number

The low order 32 bits of the serial number of the volume
that is mounted on this unit. Zero if the volume does
not have a serial number. When displayed in human
readable form, this number should be formatted as a ten
digit decimal number with leading zeros printed.
Un de fine d i f th e un i tis " Un i t - 0 f f 1 i n e " 0 r
"Unit-Available", or if the "Ignore Media Format Error"
modifier was set in the ONLINE command that brought this
un it" Un i t - On 1 i n e" •

Hosts must not assume that the value returned in this
field uniquely identifies the volume. Although this
value often will be unique, the uniqueness is not
guaranteed, especially across media obtained from several
independent suppliers. Also, media that must meet
external (industry compatible) format standards will
typically be unable to implement a volume serial number;
this field will always be zero for such media.

Status Codes:

Success (sub-code "Normal")
Success (sub-code "Duplicate Unit Number")

Imply that the unit is "Unit-Online".

Command Aborted

The unit's state is un-changed. The host must assume

Minimal Disk MSCP Subset Page 6-42
6.17 SET UNIT CHARACTERISTICS Command

that the returned unit characteristics are invalid.

Un i t-Offl i ne
Uni t-Avai lable

Controller Error
Dr ive Error

For both of these status codes the class driver should
assume that the unit is "Unit-Offline".

Description:

The SET UNIT CHARACTERISTICS command is used to set host
settable unit characteristics and obtain those unit
characteristics that are essential for proper class driver
operation. This command never alters the unit's state
(" Un i t - On 1 i n e" , " Un i t - A va i 1 a b 1 e" , " Un i t - 0 f f lin e ") • I tis
meaningless to set host settable characteristics for a unit
t ha tis "Un i t - A va i 1 a b 1 e " 0 r "Un i t - 0 f f 1 i n e" •

The ONLINE command performs a SET UNIT CHARACTERISTICS
operation after bringing a unit "Unit-Online".

Class drivers can determine which of the returned unit
characteristics are valid by examining the returned "status"
and "unit identifier" fields. The following cases exist:

1. "status" is "Success", implying that the unit is
"Unit-Online". All characteristics are valid. Note that
the value of "volume serial number" is undefined if the
unit was brought online by an ONLINE command with the
"Ignore Media Format Error" modifier.

2 • " s tat us" is" Un i t - A va i 1 a b 1 e " 0 r "Un i t - 0 f f 1 in e " and " un i t
identifier" is not zero. All unit flags except for the
"Removable media" flag are undefined and the "volume
serial number" is undefined. All other characteristics
are valid.

3. "uni t identi fier"
characteristic is
undefined.

is zero. Only the "shadow unit"
valid. All other characteristics are

The three cases listed above are the only cases that can
occur.

Rather than testing the entire quadword unit identifier, it
is sufficient to merely test the high order word of the unit
identifier, containing the class and model code bytes, to see
if it is zero or not.

Minimal Disk MSCP Subset Page 6-43
6.17 SET UNIT CHARACTERISTICS Command

Controllers must supply valid values for all characteristics
whenever the unit is "Unit-Online". Controllers must supply
a non-zero unit identifier and valid values for all
characteristics except those noted above whenever the unit is
"Un it-Ava i la ble" or the un it is "Un it-Of fl i ne" sole ly due to
being disabled or known. Controllers mayor may not, at the
controller's option, provide valid characteristics when the
uni t is "Uni t-Offl ine" for any other reason.

The rules in the above paragraphs can be restated as follows:

1. If "status" is "Success", then "unit identifier" must be
non-zero and all characteristics must be valid.

2. If "status" is "Unit-Available", then "unit identifier"
must be non-zero and almost all characteristics must be
valid.

3. If "status" is "Unit-Offline" and the sole causes of the
unit being offline are it being disabled or known, then
"unit identifier" must be non-zero and almost all
characteristics must be valid.

4. If "unit identifier" is zero, then "status" must either
be "Unit-Offline" with - some reason other than the the
unit being disabled or known indicated, or "status" must
be "Controller Error" or "Drive Error". Virtually no
characteristics need be valid.

Note that the format of
command's end message is
command's end message.

the SET UNIT CHARACTERISTICS
identical to that of the ONLINE

Minimal Disk MSCP Subset
6.18 WRITE Command

6.18 WRITE Command

Command category:

Non-sequential

Command message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I

+---------------+-------+-------+
I modifiers I rsvd I opcodel
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--- buffer ---+
I I

+--- descriptor ---+
I I

+-------------------------------+
I logical block number I
+-------------------------------+

Allowable modifiers:

Compare
Express Request
Force Error

Suppress Error Correction

Page 6-44

Note that this modifier only affects the compare pass of
a write compare operation; it has no affect on the write
operation itself.

Suppress Error Recovery

Minimal Disk MSCP Subset
n.18 WRITE Command

End message format:

Status Codes:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I status I flags I endcode I
+---------------+-------+-------+
I byte count I
+-------------------------------+
I I
+--
I
+---
I

undefined
---+

I
---+

I
+-------------------------------+
I first bad block I
+-------------------------------+

Success (sub-code "Normal")
Success (sub-code "Dupl i cate Uni t Numbe r")
Invalid Command (sub-code "Invalid Byte Count")

Page 6-45

Invalid Command (sub-code "Invalid Logical Block Number")
Command Aborted
Uni t-Offl ine
Un it-Ava i lable
Write Protected
Compare Error
Data Error
Host Buffer Access Error
Controller Error
Dr ive Error

Description:

Data is fetched from the host data buffer and written to the
unit.

Minimal Disk MSCP Subset Page 6-46
6.19 Invalid Command End Message

6.19 Invalid Command End Message

The controller returns an Invalid Command end message for
commands that violate the MSCP protocol.

End message format:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I s ta tus I flag s I endcode I
+---------------+-------+-------+

Status Codes:

Invalid Command
Invalid Command
Invalid Command
Invalid Command
Invalid Command
Invalid Command
Invalid Command

Description:

(sub-code
(sub-code
(sub-code
(sub-code
(sub-code
(sub-code
(sub-codes

Invalid Message Length")
Invalid MSCP Version")
Invalid Opcode")
Invalid Modifier")
Invalid Unit Flags")
Invalid Controller Flags")
used for reserved fields)

The controller returns this end message for any command that
violates the MSCP protocol. Protocol violations include
illegal opcodes, messages that are too short to include the
parameters required by the opcode, reserved bits set in flag
fields, and non-zero values in reserved fields.

The "command reference number" and "unit number" fields are
copied from the illegal command message; their contents are
undefined if the message was too short to contain these
parameters. The "endcode" field is NOT copied from command
message (since the command message does not describe a valid
command). Instead, the "endcode" field always contains the
constant (OP.END) defined in Table A-I.

The controller mayor may not, at its option, enter the
"Controller-Available" state relative to the issuing host
class driver after it returns this end message.

Minimal Disk MSCP Subset Page 6-47
6.20 ACCESS PATH Attention Message

6.20 ACCESS PATH Attention Message

Attention message format:

31
+-------------------------------+
I reserved I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I reserved I rsvd latncodel
+---------------+-------+-------+

unit number

Identifies the unit for which an alternate access path is
being reported.

Description:

MSCP servers use this attention message to report alternate
access paths to multi-access units. This message reports
that the specified unit is potentially accessible via the
sending MSCP server -- i.e., it would be "Unit-Available" if
it and all units that share its access path ceased being
"~it-Online" via another controller. The specific event
that causes an MSCP server to send this attention message is
the receipt, by the controller to which the unit is
"Unit-Online", of a DETERMINE ACCESS PATHS command. This
attention message is sent to all class drivers that ace
"Controller-Online" to the MSCP server and have enabled
attention messages. See Section "Multi-Access Drives" for
more information.

Minimal Disk MSCP Subset Page 6-48
6.21 AVAILABLE Attention Message

6.21 AVAILABLE Attention Message

Attention message format:

31
+-------------------------------+
I reserved I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I reserved I rsvd latncodel
+---------------+-------+-------+
I unit flags Imulti-unit codel
+---------------+---------------+
I undefined I
+-------------------------------+
I I
+--- unit identifier ---+
I I
+-------------------------------+
I media type identifier I
+---------------+---------------+
I I
/ 0 to 16 bytes /
/ of undefined data /
I I
+-------------------------------+

unit number

Identifies the unit that just became "Unit-Available".

multi-unit code
unit flags
unit identifier
media type identifer

Identical to the corresponding fields in the GET ~IT
STATUS or SET UNIT CHARACTERISTICS command end messages.
These fields must be valid as defined for the unit being
"~it-Available", regardless of the actual state of the
unit when the message is sent. That is, the "multi-unit
code", "unit identifier", and "media type identifier"
must all be valid and the "Removable media" unit flag
must be valid.

Description:

Minimal Disk MSCP Subset Page 6-49
6.21 AVAILABLE Attention Message

An MSCP server sends an AVAILABLE attention message to a
"Controller-Online" class driver when a unit asynchronously
becomes "Unit-Available" to that class driver, unless
AVAILABLE attention messages have been suppressed for that
unit by an AVAILABLE command with the "Spin-down" modifier or
by an error with similar side effects. Changes to the
"Unit-Available" state due to the class driver itself issuing
an AVAILABLE command are synchronous; all other changes to
"Unit-Available" are asynchronous. See Section "Unit
States".

The actual sending of an AVAILABLE attention message may be
delayed for an arbitrarily long time, due to communications
mechanism flow control, from the time that the unit actually
becomes "Unit-Available". The message must not be sent if
the class driver ceases to be "Controller-Online" during this
delay. The message must be sent anyway if the unit, or any
unit with which it shares an access path, becomes
"Unit-Online" via another controller during this delay. The
message mayor may not be sent, at the controller's option,
if the uni t ceases to be " Uni t-Ava i lable" for any othe r
reason during this delay.

Note that, due to these delays, it is possible for an
AVAILABLE attention message to be received after the class
driver has already brought the unit "Unit-Online". Therefore
class drivers must not use AVAILABLE attention messages to
flag "Unit-Online" units as having become "Unit-Available".
The proper procedure is to issue a command, such as a GET
UNIT STATUS, to a "Unit-Online" unit for which an AVAILABLE
attention message has been received, and only flag the unit
as having become "Unit-Available" if the command returns that
status code.

AVAILABLE attention messages are not sent for units that are
already "Uni t-Available" when a class driver enables
attention messages. Class drivers that need to be aware of
all "Unit-Available" units must enable attention messages,
then scan all units via the GET UNIT STATUS command with the
"Next Unit" modifier set to locate all units that are already
"Unit-Available". All units that subsequently become
"Uni t-Avai lable" wi 11 be reported wi th an AVAILABLE attention
message.

An MSCP server may send redundant or erroneous AVAILABLE
attention messages at any time. The frequency of such
messages must be low enough that they do not represent a
significant overhead for either hosts or the communications
mechanism. The information contained in such messages (unit
number, unit identifier, media type identifier, etc.) must
correspond to an actual, physical unit that is potentially
accessible via that MSCP server (i.e., connected to the
controller), although the unit need not be "Unit-Available".
Note that hosts must be able to handle seemingly erroneous

Minimal Disk MSCP Subset Page 6-50
6.21 AVAILABLE Attention Message

AVAILABLE attention messages in any case, since the unit's
state may change before the host can act on an otherwise
correct message.

Minimal Disk MSCP Subset Page 6-51
6.22 DUPLICATE UNIT NUMBER Attention Message

6.22 DUPLICATE UNIT NUMBER Attention Message

Attention message format:

31
+-------------------------------+
I reserved I
+---------------+---------------+
I reserved I unit number I
+---------------+-------+-------+
I reserved I rsvd I atncode I
+---------------+-------+-------+

unit number

Identifies the unit number that is duplicated on two or
more units.

Description:

An MSCP server sends DUPLICATE UNIT NUMBER attention messages
to notify hosts that two or more units of the same device
class have the same unit number. This allows the hosts to
complain to an operator, who can correct the condition. The
DUPLICATE UNIT NUMBER attention messages are sent to all
hosts that are "Controller-Online" and have enabled attention
messages. See Section "Unit Numbers" for a detailed
discussion of the handling of duplicate unit numbers. Note
that a DUPLICATE UNIT NUMBER attention message is sent
regardless of whether or not one of the units is
" Un i t - On lin e" •

The actual sending of a DUPLICATE UNIT NUMBER attention
message may be delayed for an arbitrarily long time, due to
communications mechanism flow control, from the time that the
controller first detects the duplicate unit number. The
message must not be sent if the class driver ceases to be
"Controller-Online" during this delay. The message mayor
may not be sent, at the controller's option, if the duplicate
unit number condition disappears during this delay.

DUPLICATE UNIT NUMBER attention messages are not sent for
duplicate unit number conditions that already exist when a
class driver enables attention messages. Class drivers that
need to be aware of all duplicate unit number conditions must
enable attention messages, then scan all units via the GET
UNIT STATUS command with the "Next Unit" modifier set to
locate all duplicate unit numbers. All duplicate unit
numbers that the controller subsequently detects will be
reported with a DUPLICATE UNIT NUMBER attention message.

Minimal Disk MSCP Subset Page 6-52
6.22 DUPLICATE UNIT NUMBER Attention Message

An MSCP server may send redundant DUPLICATE UNIT NUMBER
attention messages. The frequency of such messages must be
low enough that they do not represent a significant overhead
for either hosts or the communications mechanism.
Furthermore, the duplicate unit number condition being
reported must actually exist at the time the MSCP server
decides to generate the DUPLICATE UNIT NUMBER attention
message. Note, however, that the duplicate unit number
condition may have disappeared by the time the host receives
or acts upon the message.

CHAPTER 7

DISK MSCP OPTIONS

/ no options defined yet /

CHAPTER 8

MSCP ERROR LOG MESSAGE FORMATS

8.1 Introduction

MSCP controllers report errors and unusual occurences in two
ways: end messages and error log messages. Unrecoverable errors
are reported in the end message of the command that encountered
the error. Such errors should be reported back to the program
that initiated the command, so that it can take appropriate
action. Additionally, all "significant" errors are reported in
error log messages, so that they can be recorded in the host's
error log for eventual use by Field Service. The definition of
what constitutes a "significant" error is controller and/or
device specific; in general, anything that would be of interest
to Field Service is a "significant" error. The errors reported
by error log messages may be either recoverable or unrecoverable.
Note that hosts should not record errors reported in end messages
in the error log; if the error is "significant", a separate
error log ~essage will be generated.

When a host receives an error log message, the host port driver
passes the class driver the error log message text and the length
of the error log message. In addition, the device class (e.g.,
disk) of the error log message is implicit in the connection on
which the message was received. Note that the order of receipt
of error log messages relative to end or attention messages is
expressly undefined. Therefore an error log message may be
received either before or after an end message that reports the
same error or that has the "Error Log Generated" flag set.

MSCP servers assign a sequence number to every error log message
they generate. This sequence number serves two purposes. First,
if the same error log message is sent to multiple hosts, which
then record it in a common error log file, it allows the multiple
copies of the same message to be recognized as describing the
same error. Second, if a host requests that it receive every
error log message that an MSCP server generates, it allows that
host to detect missing or lost error log messages by detecting
gaps in the sequence numbers. This second purpose requires that
the host set all three error log enable flags in the "controller
flags" field of the SET CONTROLLER CHARACTERISTICS command.

MSCP Error Log Message Formats
8.1 Introduction

Page 8-2

Some controllers can achieve these purposes via other means, and
therefore need not implement error log sequence numbers; this is
further described in the third paragraph below.

Each MSCP server implements a single error log sequence number,
which it uses for all error log messages for all class drivers.
The server must increment its sequence number each time it
attempts to generate an error log message. Multiple copies of
the same error log message must all have the same sequence
number. The sequence number is reset whenever the MSCP server
loses context. The first error log message after such a loss of
context has sequence number zero. The sequence number must not
be reset as a normal result of the MSCP server becoming
"Controller-Online" or "Controller-Available" to a class driver.
Note that each MSCP server (i.e., each device class) within a
controller has its own error log sequence number.

As stated above, the error log sequence number is only reset when
the MSCP server loses context. The MSCP server reports the fact
that it has lost context with a flag in the first error log
message it sends to each class driver after said loss of context.
This means, in effect, that the MSCP server must keep track of
all class drivers to which it has sent an error log message since
its last loss of context, regardless of whether or not it is
currently "Controller-Online" to those class drivers.

MSCP servers that meet all of the following requirements need not
implement error log sequence numbers, since their purposes are
achieved via other means. The requirements are:

1. The MSCP server must never drop error log messages.
That is, whenever it has an error log message to
generate, it must block or deadlock until it is able to
generate the message.

2. The communications mechanism between the MSCP server and
the class driver must guarantee all error log messages
will be delivered without loss or duplication in the
order that they were generated. That is, the
communications mechanism must provide the same
guarantees for datagrams (error log messages) that it
provides for sequential messages (control messages).

3. The MSCP server and communications mechanism must be
inherently incapable of communicating with more than one
class driver.

MSCP servers that meet the above three requirements may generate
all error log messages with a sequence number of zero and with
the "Sequence Number Reset" flag set, rather than actually
implementing sequence numbers. All other MSCP servers must
implement an actual error log sequence number. Such other MSCP
servers may not lose context solely to reset the error log
sequence number. All losses of context must be caused by some

MSCP Error Log Message Formats
8.1 Introduction

external event such as a power failure.

Page 8-3

Since error log messages are not subject to flow control, it is
possible for a controller to generate error log messages faster
than a host can record them in its error log. In order to
minimize the probability of this happening, and thus minimize the
probability of losing error log information, controllers must
generate no more than three error log messages in response to a
single error. Note that the definition of what constitutes an
error is necessarily controller and/or drive dependent. The
three message limit encompasses an original error and all error
recovery / correction / retry sequences associated with that
error. Seemingly unrelated errors that occur in a recovery
sequence are generally considered to be different errors, and are
therefore not covered by the three message limit.

For example, consider an uncorrectable ECC error on a read.
Re-reads using offset head positioning and the like are part of
the retry sequence, and thus fall under the three message limit
for the original error. However, failure of the command
directing the drive to use offset head positioning (i.e., the
command itself fails, indicating that the heads could not be
offset) would be considered a separate error, even though both it
and the original read error might have a common cause (such as a
bad cable between the controller and the drive).

In order to achieve this three message limit, most error log
messages summarize the results of an entire retry sequence. This
approach generally results in exactly one error log message per
error. The other approach is to generate a separate error log
message for each attempt or retry that fails. This approach can
only be used with errors for which the number of retrys to small
(i.e., three or fewer attempts total), as otherwise the three
message limit will be exceeded.

MSCP Error Log Message Formats Page 8-4
8.2 Generic Error Log Message Format

8.2 Generic Error Log Message Format

All MSCP error log messages must be 384 bytes or shorter in
length. The actual maximum error log message size is a
controller characteristic and should be described in the
controller's functional specification. All host software,
however, should be prepared to handle error log messages up to
and including the 384 byte maximum size. The general format of
error log messages is as follows:

31 o
+-------------------------------+
I command reference number I
+---------------+---------------+
I ,..",... ... " "...." ..,.,,1' J,....."~ I;.t- '1---.""""""'.,.. I I ~OI;;;"1UOI;;;II""OI;;; IIUIUUOI;;;1. I UII.L '- I1UIUUlt::1. I

+---------------+-------+-------+
I event code I flags I format I
+---------------+-------+-------+
I I +--- controller identifier
I

---+
I

+---------------+-------+-------+
Imulti-unit codelchvrsn I csvrsnl
+---------------+-------+-------+
I I
+--- unit identifier ---+
I I
+---------------+-------+-------+
I fmt dependent luhvrsn I usvrsnl
+---------------+-------+-------+
I volume serial number I
+-------------------------------+
I I
/ format dependent /
/ information /
I I
+-------------------------------+

The fields in the generic error log message are as follows:

command reference number

The command reference number of the MSCP command that caused
the error reported by this error log message, or zero if the
error does not correspond to a specific outstanding command.
If this field conta,ins a command reference number, then the
command's end message will also have the "error log
generated" end message flag set. Note that the error log
message may be received either before or shortly after the
command's end message.

MSCP Error Log Message Formats Page 8-5
8.2 Generic Error Log Message Format

unit number

The unit number of the unit to which the error log message
relates, or zero if the message does not relate to a specific
unit. This field may contain the unit number of any unit of
the drive or formatter if the error relates to an entire
multi-unit drive or formatter. The validity of this field is
determined by the value in the "format" field.

sequence number

The sequence number of this error log message since the last
time the MSCP server lost context, or zero if the MSCP server
does not implement error log sequence numbers. Note that
error log sequence numbers are common to all class drivers,
and are not reset by class driver re-synchronization. Note
also that the class driver may receive error log messages out
of sequence.

format

The value in this field identifies the detailed format of the
error log message, as defined in the following sections.

flags

Bit flags, collectively called error log message flags, used
to report various attributes of the error. The following
flags are defined:

Operation Successful

If set, the operation causing this error log message has
been successfully completed. The error log message
summarizes the retry sequence that was necessary to
successfully complete the operation. If clear, the
operation has not yet been successfully completed.

Operation Continuing

If set, the retry sequence for this operation will be
continued. This error log message reports the
unsuccessful completion of one or more retries. If
clear, the retry sequence for this operation has
terminated. Provided "Operation Successful" is also
clear, the retry limit for this operation has been
reached and an unrecoverable error will be reported.
~defined (meaningless) if "Operation Successful" is set.

Sequence Number Reset

If set, then the error log sequence number ("sequence
number" field) has been reset by the MSCP server since
the last error log message sent to the receiving class

MSCP Error Log Message Formats Page 8-6
8.2 Generic Error Log Message Format

driver. If clear, the sequence number has not been
reset, implying that the "sequence number" field may be
used to detect missing error log messages. Always set if
the MSCP server does not implement error log sequence
numbers.

If "Operation Successful" and "Operation Continuing" are both
clear, then the error log message reports a hard
(unrecoverable) error. If "Operation Successful" is clear
and "Operation Continuing" is set, then the error log message
reports an intermediate step within an error recovery
operation; it is not yet certain whether the error is hard
or soft. If "Operation Successful" is set, then the error
log message summarizes the retry sequence used to recover
from a soft error.

event code

Identifies the specific error or event being reported by this
error log message. The structure of event codes is identical
to the structure of the status codes returned in end
messages. That is, they consist of a 5 bit major event code
and an 11 bit sub-code. All errors that may be reported with
both error log messages and end messages must have identical
status and event codes. Also, the same value may not be used
as both a status and event code unless it reports the same
error as each code.

The sub-code portion of event codes is potentially controller
and/or device specific. However, the same major code /
sub-code combination, whenever it is used, must always have
the same meaning. Therefore new sub-codes may be defined as
new devices are introduced, but the meaning of old sub-codes
should not change. Event code values are listed in Appendix
B.

controller identifier

Uniquely identifies the controller
accessible via MSCP. See Section
Identifiers".

csvrsn

among all
"Controller

devices
and Unit

The controller's software, firmware, or microcode revision
number.

chvrsn

The controller's hardware revision number.

mUlti-unit code

The multi-unit code, as defined in Section' "Multi-Unit Drives

MSCP Error Log Message Formats Page 8-7
8.2 Generic Error Log Message Format

and Formatters" of the unit to which the error log message
relates. This field may contain the mUlti-unit code of any
unit of the drive or formatter if the error relates to an
entire multi-unit drive or formatter.

unit identifer

Uniquely identifies the unit among all devices accessible via
MSCP. See Section "Controller and Unit Identifiers". This
field is only present for errors that relate to a specific
unit.

usvrsn

The unit's software, firmware, or microcode revision number.
This field is only present for errors that relate to a
specific unit.

uhvrsn

The unit's hardware revision number. This field is only
present for errors that relate to a specific unit.

volume serial number

The low order 32 bits of the serial number of the volume that
is mounted on the unit. Zero if the unit's format does not
provide for a volume serial number. Undefined (garbage) if
there is no volume mounted in the unit, the area of the
volume that contains the serial number cannot be read
successfully, the error occurred before the volume serial
number could be determined while bringing the unit
"Unit-Online", the unit is not "Unit-Online" to any host, or
if the "Ignore Media Format Error" modifier was specified in
the ONLINE command that brought the uni t "Uni t-Onl ine" • Thi s
field is only present for errors that relate to a specific
disk un it.

fmt dependent
format dependent information

The format of the remainder of the error log message depends
upon the value of the "format" field. Note that the fields
"unit number" and "multi-unit code" through "volume serial
number" also depend on the value of the "format" field, as
they are only present for those formats used to report errors
that relate to a specific unit.

The following sections describe the specific error log message
formats.

MSCP Error Log Message Formats
8.3 Controller Errors

8.3 Controller Errors

Page 8-8

The following error log message format is used to report
controller errors:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
Isequence number I reserved I
+---------------+-------+-------+
I event code I flags I formatl
+---------------+-------+-------+
I I
+--- controller identifier
I

---+
I

+---------------+-------+-------+
I Ichvrsn I csvrsnl
I +-------+-------+
I controller I
/ dependent /
/ information /
I I
+-------------------------------+

controller dependent information

A variable (controller dependent) amount of information;
often no controller dependent information is provided. The
length of this information is implied by the total length of
the error log message, passed to the class driver by the port
driver. This information will typically not be interpreted
by error log formatting programs, instead being printed as a
series of octal values.

MSCP Error Log Message Formats
8.4 Host Memory Access Errors with Bus Address

8.4 Host Memory Access Errors with Bus Address

The following error log message format is used
memory access errors when the host memory
available to the controller:

31
+-------------------------------+
I command reference number I
+---------------+---------------+
Isequence number I reserved I
+---------------+-------+-------+
I event code I flags I formatl
+---------------+-------+-------+
I I
+--- controller identifier
I

---+
I

+---------------+-------+-------+
I reserved Ichvrsn I csvrsnl
+---------------+-------+-------+
I host memory address I
+-------------------------------+

host memory address

Page 8-9

to report host
bus address is

The address on the host memory bus at which the host memory
access error occurred, expressed as a 32 bit quantity. The
resolution to which a controller identifies the address at
which the error occurred is controller dependent, and must be
described in the controller's Functional Specification. Disk
controllers will typically provide a resolution of one disk
block (either 512 or 576 bytes).

MSCP Error Log Message Formats
8.5 Disk Transfer Errors

8.5 Disk Transfer Errors

Page 8-10

The following error log message format is used to report errors
that occur during a disk transfer. Note that this format is
generally used to report the results of a sequence of retries.

level

31
+-------------------------------+
I command reference number I
+---------------+---------------+
Isequence number I unit number I
+---------------+-------+-------+
I event code I flags I formatl
+---------------+-------+-------+
I I
+--- controller identifier
I

---+
I

+---------------+-------+-------+
Imulti-unit codelchvrsn I csvrsnl
+---------------+-------+-------+
I I
+--- unit identifier ---+
I I
+-------+-------+-------+-------+
I retry I level luhvrsn I usvrsnl
+-------+-------+-------+-------+
I volume serial number I
+-~-----------------------------+
I header code I
+-------------------------------+
I I
/ controller or disk /
/ dependent information /
I I
+-------------------------------+

The error recovery level used for the most recent attempt at
the transfer. The error recovery level is a device dependent
encoding of the special error recovery procedures, such as
offset head positioning, used for the most recent transfer
attempt. The values zero and 255 (all ones) are reserved to
indicate that no special error recovery procedures were used.

retry

The retry count, within the current error recovery level, of
the most recent attempt at the transfer. This value starts
at one for the first attempt using a particular error
recovery level and increments for each subsequent attempt at
the same level. This continues up to some drive dependent
maximum, at which time the retry count is reset to one and
the next error recovery level (if any) is tried.

MSCP Error Log Message Formats
8.5 Disk Transfer Errors

header code

Page 8-11

Identifies the physical disk location at which the error
occurred. If the high four bits are 0000 (binary), then the
low 28 bits are the logical block number at which the error
occurred. If the high four bits are 0110 (binary), then the
low 28 bits are the replacement block number at which the
error occurred. All other patterns of the high four bits of
"header code" are reserved, and must not be returned without
an ECO to this specification to define their interpretation.
The 28 bit logical or replacement block number may be
decomposed, using the disk geometry parameters returned by
the GET UNIT STATUS command, to obtain the cylinder, group,
track, and sector position at which the error occurred.

controller or disk dependent information

A variable (controller or disk dependent) amount of
information; often no controller or disk dependent
information is provided. The length of this information is
implied by the total length of the error log message, passed
to the class driver by the port driver. This information
will typically not be interpreted by error log formatting
programs, instead being printed as a series of octal values.

MSCP Error Log Message Formats
8.6 SDI Errors

8.6 SDI Errors

Page 8-12

The following error log message format is used by SDl disk
controllers to report drive detected errors and SDI communication
errors. Note that the controller retries these errors only once
or twice, so a separate error log message will be generated for
each attempt that fails.

header code

31
+-------------------------------+
I command reference number I
+---------------+---------------+
Isequence number I unit number I
+---------------+-------+-------+
I event code I flags I formatl
+---------------+-------+-------+
I I +--- controller identifier
I

---+
I

+---------------+-------+-------+
Imulti-unit codelchvrsn I csvrsnl
+---------------+-------+-------+
I I
+---
I

unit identifier ---+
I

+---------------+-------+-------+
I reserved luhvrsn I usvrsnl
+---------------+-------+-------+
I volume serial number I
+-------------------------------+
I header code I
+-------------------------------+
I I
+---
I
+---
I

SDI status
information
(12 bytes)

---+
I

---+
I

+-------------------------------+

Identifies the physical disk location at which the error
occurred. If the high four bits are 0000 (binary), then the
low 28 bits are the logical block number at which the error
occurred. If the high four bits are 0110 (binary), then the
low 28 bits are the replacement block number at which the
error occurred. All other patterns of the high four bits of
"header code" are reserved, and must not be returned without
an ECO to this specification to define their interpretation.
The 28 bit logical or replacement block number may be
decomposed, using the disk geometry parameters returned by
the GET UNIT STATUS command, to obtain the cylinder, group,
track, and sector position at which the error occurred.

MSCP Error Log Message Formats
8.6 sor Errors

sor status information

Page 8-13

Twelve bytes of status information returned by the SO! GET
STATUS command or by the sor UNSUCCESSFUL response. The unit
number information returned by the sor command or response is
not included, as that information is provided elsewhere in
the error log message. Otherwise, all of the sor status
information is included. See the sor specification for the
format of this information.

APPENDIX A

OPCODE, FLAG, AND OFFSET DEFINITIONS

Notes: 1. The "x" in a 32 bit mnemonic for a bit flag will be either a "V" or an "M",
respectively, depending on whether the symbol is defined as a bit number
(offset) or as a mask.

2. All offset values and field sizes are expressed in bytes.

Table A-I Control Message Opcodes

+--------------------+--------------------------+-----._-----------------------------------+
I Opcode Value I Preferred Mnemonics I I
I Dec. I Oct. I Hex. I 16 bi t I 32 bi t I Control Message Type I
+------+------+------+--------+-----------------+---+

1 01 I 01 OP .ABO MSCP$K OP ABORT ABORT Command
16 20 I 10 OP.ACC MSCP$K-OP-ACCES ACCESS Command

8 10 I 08 OP.AVL MSCP$K-OP-AVAIL AVAILABLE Command
32 40 I 20 OP .CMP MSCP$K-OP-COMP COMPARE HOST DATA Command
11 13 I 0B OP. DAP MSCP$K-OP-DTACP DETERMINE ACCESS PATHS Command
18 22 I 12 OP.ERS MSCP$K-OP-ERASE ERASE Command

2 02 I 02 OP. GCS MSCP$K-OP-GTCMD GET COMMAND STATUS Command
3 03 I 03 OP. GUS MSCP$K-OP-GTUNT GET UNIT STATUS Command
9 11 I 09 OP.ONL MSCP$K-OP-ONLIN ONLINE Command

+------+------+------+--------+-------=--=------+---+

Opcode, Flag, and Offset Definitions Page A-2

Table A-I Control Message Opcodes (cont.)

+--------------------+--------------------------+---+
I Opcode Value I Preferred Mnemonics I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Control Message Type I
+------+------+------+--------+-----------------+---+

33 41 21 OP.RD MSCP$K OP READ I READ Command
20 24 14 OP.RPL MSCP$K-OP-REPLC I REPLACE Command

4 04 04 OP.SCC MSCP$K-OP-STCON I SET CONTROLLER CHARACTERIST1CS Command
10 12 0A OP. S UC MSCP$K-OP-ST UNT I SET UN IT CHARACTEHIST ICS Command
34 42 22 OP.WR MSCP$K-OP-WRITE I WRITE Command

- I
128 200 80 OP.END MSCP$K OP END I End message flag (see note below)

7 7 7 OP.SEX MSCP$K-OP-SEREX I Serious Exception end msg. (see below)
I

64 100 40 OP.AVA MSCP$K OP AVATN I AVAILABLE Attention Message
65 101 41 OP. DUP MSCP$K-OP-DUPUN I DUPLICATE UNI'r NUMBER Attention fvtessage
66 102 42 OP.ACP MSCP$K OP ACPTH I ACCESS PATH Attention Message

+------+------+------+--------+-------=--=------+---+
Note: End message opcodes (also called endcodes) are formed by adding the end messa<je

flag to the command opcode. For example, a READ command's end message contains
(using 16 bit mnemonics) the value OP.RD+OP.END in its opcode field. The
Invalid Command end message contains just the end message flag (i.e., OP.END) in
its opcode field. The Serious Exception end message contains the sum of the end
message flag plus the serious exception opcode shown above (i.e., OP.SEX+OP.END)
in its opcode field.

Command opcode bits 6 and 7 indicate the type of message (command, end, or
attention message. Command opcode bits 3 through 5 indicate the command
category (immediate, sequential, or non-seque~tial) and whether or not the
command includes a buffer descriptor.

+---+

Opcode, Flag, and Offset Definitions Page A-J

Table A-2 Command Modifiers

+------+--------------+--------------------------+--+
I Bit I Bit Mask I Preferred Mnemonics I I
INumberl Octal 1 Hex. 1 16 bit 132 bit (see note) 1 Command Modifier 1
+------+-------+------+--------+-----------------+--+

Generic Command Modifiers: I
14 1 40000 I 4000 I MD.CMP 1
15 1100000 1 8000 1 MD. EXP I
12 1 10000 1 1000 1 MD. ERR 1

9 1 1000 1 200 I MD.SEC I
8 1 400 1 100 1 MD.SER 1

AVAILABLE Command Modifiers:

MSCP$x MD COMP
MSCP$x-MD-EXPRS
MSCP$x-MD-ERROR
MSCP$x-MD-SECOR
MSCP$xMD-SEREC

I 1 2 1 2 1 MD.ALL MSCP$x MD ALLCD
o 1 1 1 1 1 MD.SPD 1 MSCP$x MD SPNDW

GET UNIT STATtE Command Modifiers:
o 1 1 1 1 I MD.NXU I MSCP$x MD NXUNT

ONLINE Command Modifiers: I

Compare
Express Request
Force Error
Suppress Error Correction
Suppress Error Recovery

All Class Drivers
Spin-down

Next Unit

o 1 1 I 1 I MD. RI P MSCP$x MD RIP Allow Self Destruct ion
1 1 2 I 2 I MD. IMF I MSCP$X-MD-IGNMF Ignore Media Format Error

ONLINE and SET UNIT CHARACTERISTICS Command Modlfiers:
2 I 4 I 4 I MD.SWP I MSCP$x MD STWRP I Enable Set Write Protect

REPLACE Command Modifiers: I - - 1
o 1 1 1 1 1 MD.PRI 1 MSCP$x MD PRIMR I Primary Replacement Block

+------+-------+------+--------+-------=--=------+--+

Table A-3 End Message Flags

+------+--------------+--------------------------+--+
1 Bit 1 Bit Mask 1 Preferred Mnemonics 1 I
INumberl Octal 1 Hex. 1 16 bit 132 bit (see note) 1 End Message Flag I
+------+-------+------+--------+-----------------+--+
1 7 1 200 I 80 I EF.BBR 1 MSCP$x EF BBLKR I Bad Block Reported I
1 6 1 100 1 40 1 EF.BBU 1 MSCP$x-EF-BBLKU 1 Bad Block Unreported I
1 5 1 40 1 20 1 EF.LOG 1 MSCP$x=EF ERLOG I Error Log Generated I
+------+-------+------+--------+-----------------+--+

Opcode, Flag, and Offset Definitions Page A-4

Table A-4 Controller Flags

+------+--------------+--------------------------+--+
I Bit I Bit Mask I Preferred Mnemonics I I
'Number I Octal I Hex. 1 16 bit 132 bit (see note) I Controller Flag I
+------+-------+------+--------+-----------------+--+
I 7 I 200 I 80 I CF.ATN 1 MSCP$x CF ATTN I Enable Attention Messages ,
I 6 , 100' 40 I CF.MSC ,MSCP$x-CF-MISC I Enable Miscellaneous Error Log tvles~agesl
, 5 I 40 I 20 I CF.OTH I MSCP$x-CF-OTHER I Enable Other Host's Error Log Messages I
I 4' 20' 10 I CF.THS I MSCP$x-CF-THIS I Enable This Host's Error Log Messages I
I 0' l' 1 I CF.576 I MSCP$x-CF-576 I 576 Byte Sectors I
+------+-------+------+--------+-------=--=------+--+

Table A-5 Unit Flags

+------+--------------+--------------------------+--+
I Bit I Bit Mask I Preferred Mnemonics I I
'Number' Octal , Hex. , 16 bi t 132 bi t (see note) I Uni t Flag ,
+------+-------+------+--------+-----------------+--+
I 0 I 1 I 1 I UF. CMR I MSCP$x UF CMPRD I Compare Reads I
, 1, 2 I 2 I UF.CMW I MSCP$x-UF-CMPWR I Compare Writes I
, 7 , 200 I 80 I UF .RMV I MSCP$X-UF-RMVBL I Removable Media I
I 13 '20000 I 2000 I UF.WPH I MSCP$x-UF-WRTPH I Write Protect (hardware) I
, 12 '10000' 1000 , UF.WPS I MSCP$x-UF-WRTPS I Write Protect (software) I
, 2' 4 I 4' UF. 576 I MSCP$x -UF-576 I 576 Byte Sectors ,
+------+-------+------+--------+-------=--=------+--+

Opcode, Flag, and Offset Definitions Page A-5

Table A-6 Command Message Offsets

+--------------------+--------------------------+-------+---------------------------------+
I Offset Value I Preferred Mnemonics I Field I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Size I Field Description I
+------+------+------+--------+-----------------+-------+---------------------------------+

Generic Command Message Offsets: I
o I 0 I 0 I P.CRF I MSCP$L CMD REF I
4 I 4 I 4 I P. UNIT I MSCP$W-UNIT I
6 I 6 I 6 I I - I
8 I 10 I 8 I P.OPCD I MSCP$B OPCODE I
9 I 11 I 9 I I I

10 I 12 I A I P.MOD I MSCP$W MODIFIER I
12 I 14 I C I P. BCNT I MSCP$L -BYTE CNT I
16 I 20 I 10 I P.BUFF I MSCP$Z-BUFFER I
28 I 34 I lC I P.LBN I MSCP$L-LBN I

I I I I I

4
2
2
1
1
2
4

12
4

ABORT and GET COMMAND STATUS Command Message Offsets:
12 I 14 I C I P.OTRF I MSCP$L OUT REF I 4

I I I I - - I

Command reference number
Unit number
Reserved
Opcode
Reserved
Modifiers
Byte count
Buffer descriptor
Logical Block Number

Outstanding reference number

ONLINE and SET UNIT CHARACTERISTICS Command Message Offsets:
12 I 14 I C I I I 2 Reserved
14 I 16 I E I P. UNFL I MSCP$W UNT FLGS I 2 Unit flags
16 I 20 I 10 I I I 12 Reserved
28 I 34 I lC I P.DVPM I MSCP$L DEV PARM I 4 Device dependent parameters

I I I I I
REPLACE Command Message Offsets: I

12 I 14 I C I P. RBN I MSCP$L RBN I 4 Replacement block number
I I I I - I

SET CONTROLLER CHARACTERISTICS Command Message Offsets
12 I 14 I C I P.VRSN I MSCP$W VERSION I 2 MSCP version
14 I 16 I E I P.CNTF I MSCP$W-CNT FLGS I 2 Controller flags
16 I 20 I 10 I P.HTMO I MSCP$W-HST-TMO I 2 Host timeout
18 I 22 I 12 I I - I 2 Reserved
20 I 24 I 14 I P.TIME I MSCP$Q TIME I 8 Quad-word time and date

+------+------+------+--------+-----------------+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-6

Table A-7 End and Attention Message Offsets

+--------------------+--------------------------+-------+---------------------------------+
I Offset Value I Preferred Mnemonics I Field I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Size I Field Description I
+------+------+------+--------+-----------------+-------+---------------------------------+

Generic End Message Offsets: I
o I 0 I 0 I P.CRF I MSCP$L CMD REF I
4 I 4 I 4 I P. LNIT I MSCP$W-UNIT I
6 I 6 I 6 I I I
8 I 10 I 8 I P.OPCD I MSCP$B OPCODE I
9 I 11 I 9 I P. FLGS I MSCP$B-FLAGS I

10 I 12 I A I P.STS I MSCP$W-STATUS I
12 I 14 I C I P. BCNT I MSCP$L -BYTE CNT I
16 1 20 I 10 I I - - I
28 I 34 I lC I P.FBBK I MSCP$L FRST BAD I

I I I I I
ABORT and GET COMMAND STATts End Message Offsets:

12 I 14 I C I P.OTRF I MSCP$L OUT REF
GET COMMAND STATts End Message Offsets: -

16 I 20 I 10 I P.CMST I MSCP$L CMD STS
I I I I --

GET UNIT STATUS End Message Offsets:

4
2
2
1
1
2
4

12
4

4

4

Command reference number
Unit number
Reserved
Opcode (also called endcode)
End message flags
Status
Byte count
Reserved
First bad block

Outstanding reference number

Command status

12 14 C P.MLUN MSCP$W MULT UNT 2 MUlti-unit code
14 16 E P. UNFL MSCP$W-UNT FLGS 2 Unit flag s
16 20 10 - - 4 Reserved
20 24 14 P. UNTI MSCP$Q UNIT ID 8 Unit identifer
28 34 IC P.MEDI MSCP$L-MEDIA ID 4 Media type identifier
32 40 20 P.SHUN MSCP$W-SHDW UNT 2 Shadow unit
36 44 24 P.TRCK MSCP$W-TRACK 2 Track size
38 46 26 P.GRP MSCP$W-GROUP 2 Group size
40 50 28 P.CYL MSCP$W-CYLINDER 2 Cylinder size
42 52 2A 2 Reserved
44 54 2C P.RCTS MSCP$W RCT SIZE 2 RCT table size
46 56 2E P.RBNS MSCP$W-RBNS 1 RBNs / track
47 57 2F P.RCTC MSCP$B-RCT CPYS 1 RCT copies

+------+------+------+--------+-------=---=-----+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-7

Table A-7 End and Attention Message Offsets (cont.)

+--------------------+--------------------------+-------+---------------------------------+
I Offset Value I Preferred Mnemonics I Field I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Size I Field Description I
+------+------+------+--------+-----------------+-------+---------------------------------+

ONLINE and SET UNIT CHARACTERISTICS End Message and AVAILABLE Attention Message offs~ts:
12 I 14 I C I P.MLUN I MSCP$W MULT UNT I 2 Multi-unit code
14 I 16 I E I P. UNFL I MSCP$W-UNT FLGS I 2 Unit flags
16 I 20 I 10 I I - - I 4 Reserved
20 I 24 I 14 I P. UNTI I MSCP$Q UNIT ID I 8 Unit identifer
28 I 34 I IC I P.MEDI I MSCP$L-MEDIA ID I 4 l'-1edia type identifier
36 I 44 I 24 I P. UNSZ I MSCP$L-UNT SIZE I 4 Unit size
40 I 50 I 28 I P.VSER I MSCP$L-VOL-SER I 4 Volume serial number

I I I I - - I
SET CONTROLLER CHARACTERISTICS End Message Offsets:

12 I 14 I C I P. VRSN I MSCP$W VERSION I 2 MSCP version
14 I 16 I E I P.CNTF I MSCP$W-CNT FLGS I 2 Controller flags
16 I 20 I 10 I P.CTMO I MSCP$W-CNT-TMO I 2 Controller timeout
18 I 22 I 12 I I - - I 2 Reserved
20 I 24 I 14 I P.CNTI I MSCP$Q CNT ID I 8 Controller 1D

+------+------+------+--------+-------=---=-----+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-8

Table A-8 Error Log Message Offsets

+--------------------+--------------------------+-------+---------------------------------+
I Offset Value I Preferred Mnemonics I Field I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Size I Field Description I
+------+------+------+--------+-----------------+-------+---------------------------------+

Generic Error Log Message Offsets:
o 0 0 L.CRF MSLG$L CMD REF
4 4 4 L. UNIT MSLG$W-UNIT
6 6 6 L.SEQ MSLG$W-SEQ NUM
8 10 8 L.FMT MSLG$B-FORMAT
9 11 9 L.FLGS MSLG$B-FLAGS

10 12 A L.EVNT MSLG$W-EVENT
12 14 C L.CNTI MSLG$Q-CNT ID
20 24 14 L.CSVR MSLG$B-CNT-SVR
21 25 15 L.CHVR MSLG$B-CNT-HVR
22 26 16 L.MLUN MSLG$W-MULT UNT
24 30 18 L. UNTI MSLG$Q-UNIT-ID
32 40 20 L.USVR MSLG$B-UNIT-SVR
33 41 21 L.UHVR MSLG$B-UNIT-HVR
34 42 22 - -
36 44 24 L. VSER MSLG$ L VOL SER

4
2
2
1
1
2
8
1
1
2
8
1
1
2
4

Command reference number
Unit number
Sequence number
Format
Error log message flags
Event code
Controller ID
Controller software version
Controller hardware version
Multi-unit code
Unit ID
Unit software version
Unit hardware version
Format dependent
Volume serial number

Host Memory Access Errors with Bus Address Error Log Message Offsets:
24 I 30 I 18 I L.BADR I MSLG$L BUS ADDR I 4 I Bus address

I I I I - - I I
Disk Transfer Errors Error Log Message Offsets: I

34 I 42 I 22 I L. LVL I MSLG$B LEVEL I 1 I Level
35 I 43 I 23 I L. RTRY I MSLG$B-RETRY I 1 I Retry
36 I 44 I 24 I L. VSER I MSLG$L-VOL SER I 4 I Volume ser ial number
40 I 50 I 28 I L.HDCD I MSLG$L-HDR-CODE I 4 I Header code

+------+------+------+--------+-------=---=-----+-------+---------------------------------+

Opcode, Flag, and Offset Definitions Page A-9

Table A-8 Error Log Message Offsets (cont.)

+--------------------+--------------------------+-------+---------------------------------+
I Offset Value I Preferred Mnemonics I Field I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Size I Field Description I
+------+------+------+--------+-----------------+-------+-----~---------------------------+
1 SDl Errors Error Log Message Offsets: I I I
I 40 1 50 I 28 I L.HDCD I MSLG$L HDR CODE 1 4 I Header code I
I 44 1 54 I 2C I L.SDl I MSLG$Z-SDl- 1 12 I SDl information I
+------+------+------+--------+-------=---------+-------+---------------------------------+

Table A-9 Error Log Message Format Codes

+--------------------+--------------------------+---+
1 Format Code I Preferred Mnemonics I I
I Dec. 1 Oct. I Hex. I 16 bit I 32 bit I Format Description I
+------+------+------+--------+-----------------+---+
I 0 1 0 I 0 I FM.CNT I MSLG$K CNT ERR I Controller Errors I
I 1 I 1 1 1 I FM.BAD I MSLG$K-BUS-ADDR I Host Memory Access Errors with Hus Addr.1
I 2 I 2 I 2 I FM.DSK I MSLG$K-DlSK TRN I Disk Transfer Errors I
I 3 1 3 1 3 I FM.SDl I MSLG$K-SDI - I SDl Errors I
+------+------+------+--------+-----------------+---+

Table A-10 Error Log Message Flags

+------+--------------+--------------------------+--+
I Bit 1 Bit Mask I Preferred Mnemonics I 1
INumber 1 Octal I Hex. I 16 bit 132 bit (see note) 1 Format Description I
+------+-------+------+--------+-----------------+--+
1 7 1 200 1 80 1 LF.SUC I MSLG$x LF SUCC 1 Operation Successful I
1 6 1 100 1 40 1 LF.CON I MSLG$x-LF-CONT 1 Operation Continuing I
I 0 1 1 I 1 I LF. SNR I MSLG$x=LF=SQNRS 1 Sequence Number Reset I
+------+-------+------+--------+-----------------+--+

APPENDIX B

STATUS AND EVENT CODE DEFINITIONS

Notes: 1. The combination of a status or event code with a sub-code should be expressed
(assuming 16 bit symbols) as: (subcode*ST.SUB)+code

2. In the sub-code tables, an asterisk in the "EV" column indicates that the code
and sub-code may be used as an event code. An asterisk in the "STU column
indicates that the code and sub-code may be used as a status code.

Status and Event Code Definitions Page tj-2

Table 8-1 Status and Event Codes

+--------------------+--------------------------+---+
I Value I Preferred Mnemonics I I
I Dec. I Oct. I Hex. I 16 bit I 32 bit I Status or Event Code I
+------+------+------+--------+-----------------+---+

31 37 IF ST.MSK MSCP$M ST MASK Status / event code mask
32 40 20 ST.SUB MSCP$K-ST-SBCOD Sub-code multiplier

o 0 0 ST. S UC MSCP$K ST S OCC Success
1 1 1 ST.CMD MSCP$K-ST-ICMD Invalid Command
2 2 2 ST.ABO MSCP$K-ST-ABRTD Command Aborted
3 3 3 ST. OFL MSCP$K-ST-OFFLN Uni t-Of fl ine
4 4 4 ST.AVL MSCP$K-ST-AVLBL Unit-Available
5 5 5 ST.MFE MSCP$K-ST-MFMTE Media Format Error
6 6 6 ST.WPR MSCP$K-ST-WRTPR Write Protected
7 7 7 ST.CMP MSCP$K-ST-COMP Compare Error
8 10 8 ST.DAT MSCP$K-ST-DATA Data Error
9 11 9 ST.HST MSCP$K-ST-HSTBF Host Buffer Access Error

10 12 A ST.CNT MSCP$K-ST-CNTLR Controller Error
11 13 B ST.DRV MSCP$K-ST-DRIVE Drive Error
31 37 IF ST.DIA MSCP$K-ST-DIAG Message from an internal diagnostic

+------+------+------+--------+-------=--=------+---+

Status and Event Code Definitions Page ti-3

Table B-2 Standard Status and Event Sub-code Values

+------+---------------------+-+-+--+
I Sub- I Code + Sub-code IEISI I
I code I Dec. I Oct. I Hex. IVITI Status or Event Sub-Code I
+------+------+-------+------+-+-+--+

"Success" sub-code values: I I I 1
o 1 0 1 0 I 0 1 I * I No rma I 1
1 1 32 1 40 1 20 I 1* I Spin-down Ignored I
2 1 64 I 100 I 40 I 1* I Still Connected I
4 1 128 1 200 I 80 1 1* 1 Duplicate Unit Number I
8 1 256 1 400 I 100 I 1*1 Already Online I

16 1 512 1 1000 I 200 I I * I Still Online
1 1 I I 1 1

"Invalid
o 1

many 1
1

1

1

1

1

1

I
I
1

Command"
I I

I
1
I
I
I
1

I
1

1
I

"Command Aborted"
I I
1 I

sub-code
1 I I

I
I
I
I
1

I
I
I
I
1

sub-code
1

1

values:
I 1 * 1 Invalid Message Length
I 1*1 Other "Invalid Command" sub-codes values should be
I I I referenced as follows (note that this is combined witn
I I I the status code):
1 1 I
1 I I offset*256.+code
1 1 1
1 1 1 where "offset" is the command message offset symbol
1 1 1 for the field in error and "code" is the symbol for
1 1 I the "Invalid Command" status code.
1 1 1
values:
1 1*1 Sub-codes are not used.
1 1 1

"Unit-Offline" sub-code values:
o 1 3 1 3 1 3 1 1 * 1 Un i t un k n 0 wn 0 ron lin e to an 0 the r co n t roll e r •
1 1 35 1 43 1 23 1 1 * 1 No volume mounted or dr ive disabled via HUN/STOP swi tch

I 1 1 1 I I (unit is in known substate of Unit-Offline)
2 I 67 I 1 03 I 43 I 1 * I Un i tis in 0 per a t i v e
4 I 131 1 203 I 83 I 1* I Duplicate uni t number
8 I 2 59 1 4 03 I 103 I 1 * 1 Un i t dis a bled by fie Ids e r vic e 0 r in t ern a I d i a y nos tic

+------+------+-------+------+-+-+--+

Status and Event Code Definitions Page ti-4

Table B-2 Standard Status and Event Sub-code Values (cont.)

+------+---------------------+-+-+--+
I Sub- I Code + Sub-code IEISI I
I code I Dec. I Oct. I Hex. I V I T I Sta tus or Event Sub-Code I
+------+------+-------+------+-+-+--+

"Unit-Available" sub-code values: I
I I I I 1*1 Sub-codes are not used. I
I I 1 I I I 1

"Media Format Error" sub-code values: I
many 1 I 1 1*1*1 See Table B-3

I I 1 I 1 I
"Write Protected" sub-code values:
256 I 8198 I 20006 1 2006 1 I * I Uni t is Hardware Wri te Protected
128 1 4102 1 1 0 0 06 1 1006 1 1 * 1 Un i tis So f twa r e Wr i t e Pro t e c ted

I 1 1 1 1 1
"Compare Error" sub-code values:

1 I 1 1 1 * 1 Sub-codes are not used.
I 1 1 1 1 1

"Data Error" sub-code values: 1

o 1 8 1 10 1 8 1 1 * I Sec tor wa s w r itt en with "F' 0 r c e Err 0 r" In 0 d i fie r
many 1 1 1 1*1*1 See Table B-3

1 1 1 1 1 1
"Host Buffer Access Error" sub-code values:
many 1 1 1 1*1*1 See Table B-3

1 1 1 1 1 1
"Controller Error" sub-code values:

o I 10 12 1 A I I I Reserved for command timeout / retry limit exceeded.
many I I 1*1*1 See Table B-3

I I I I 1

"Drive Error" sub-code values:
many I I I 1*1*1 See Table B-3

I I I I I I
"Message from an internal diagnostic" sub-code values:
many I I I I * I 1 See Table B-3

+------+------+-------+------+-+-+--+

Status and Event Code Definitions Paye tj-~

Table B-3 Non-Standard Status and Event Sub-code Values
(Use of these sub-codes is controller or drive type dependent)

+------+---------------------+-+-+--+
I Sub- I Code + Sub-code IEISI I
I code I Dec. I Oct. I Hex. IVITI Status or Event Sub-Code I
+------+------+-------+------+-+-+--+

"Media Format Error" sub-code values:
1 1 37 I 45 I 25 I 1* FCT unreadable EDC Error
2 I 69 1 105 1 45 1 1* FCT unreadable -- Invalid sector neader
3 1 101 1 145 1 65 I 1* FCT unreadable -- Data sync timeout
5 I 165 1 245 1 A5 I 1* Di sk isn I t formatted wi th 512 byte sectors
6 1 197 1 305 1 C5 1 1 * Disk isn I t formatted or FCT corrupted
7 1 229 1 345 1 E5 1 1 * FCT unreadable -- Uncorrectable ECC Error

"Data
2
3
7
8
9

10
11
12
13
14
15

1 1 1 1 1
Error" sub-code values:

72 110 48 * *
104 150 68 * *
232 350 E8 * *
264 410 108 *
296 450 128 *
328 510 148 *
360 550 168 *
392 610 188 *
424 650 lA8 *
456 710 lC8 *
488 750 lE8 *

Header compare error (valid header not found)
Data Sync not found (Data Sync timeout)
Uncorrectable ECC Error
One Symbol ECC Error
Two Symbol ECC Error
Three Symbol ECC Error
Four Symbol ECC Error
Five Symbol ECC Error
Six Symbol ECC Error
Seven Symbol ECC Error
Eight Symbol ECC Error

"Host Buffer Access Error" sub-code values:
1 1 41 1 51 1 29 1 1 * 1 Odd transfer address
2 1 73 1 III 1 49 1 1 * 1 Odd byte count
3 1 105 1 151 1 69 1 1* I Non-existent memory error
4 1 137 1 211 1 89 1 1*1 Host memory parity error

+------+------+-------+------+-+-+--+

Status and Event Code Definitions Page 8-6

Table B-3 Non-Standard Status and Event Sub-code Values (cont.)
(Use of these sub-codes is controller or drive type dependent)

+------+---------------------+-+-+--+
I Sub- I Code + Sub-code IEISI I
I code I Dec. I Oct. I Hex. I V I T I Status or Event Sub-Code I
+------+------+-------+------+-+-+--+

"Controller Error" sub-code values:
1 I 42 52 I 2A 1* * I SERDES overrun error
2 I 74 112 I 4A 1* * I EDC Error
3 I 106 152 1 6A 1* * I Inconsistent internal data structure.

I I I I
"Drive Error sub-code values

1 I 43 53 I 2B 1* * I SDI command timed out (no response or seek incomplete)
2 I 75 113 I 4B 1* * I Controller detected transmission or protocol t:!rror
3 1 107 153 I 6B 1* * 1 Posi tioner error (mis-seek)
4 I 139 213 1 8B 1 * * 1 Lost read/write ready during or between transfers
5 1 171 253 1 AB 1 * * I Dr i v e c 1 0 c k d r 0 po u t
6 I 203 313 1 CB 1 * * 1 Lost receiver ready between sectors
7 1 235 353 1 EB 1* *1 Drive detected error.
8 I 267 413 1 10B 1 * * I Controller detected pulse or state pari ty error

+------+------+-------+------+-+-+--+

APPENDIX C

CONTROLLER, UNIT, AND MEDIA TYPE IDENTIFER VALUES

Notes: 1. Values for new products must be added to this appendix via an ECO to this
specification.

Table C-l Controller and Unit Identifier "Class" Byte Values

+----------+-----------------------------------+
IClass By tel I
I (decimal) I Subsystem Type I
+----------+-----------------------------------+
I 0 I reserved -- must not be assigned I
I 1 I Mass storage controllers I
I 2 I Disk class devices I
+----------+-----------------------------------+

Controller, Unit, and Media Type Identifer Values Page C-2

Table C-2 Mass Storage Controller "Model" Byte Values

+----------+-----------------------------------+
IModel By tel I
I (dec i rna 1) I Con t roll e r Typ e I
+----------+-----------------------------------+
I 0 I reserved -- must not be assigned I
I 2 I UDA50 I
+----------+-----------------------------------+

Table C-3 Disk Class Devices Identifier Values

+----------+---------+-------+---------------------------+--------------------------------+
IModel Byte I Device I Media I Media Type Identifier I I
I (decimal) I Type Name I Name I octal I hex I Device I
+----------+---------+-------+---------------+-----------+--------------------------------+
I 0 I Reserved -- must not be assigned. I
I 1 I DU I RA80 I 022544,010120 I 2564,1050 I RA80 fixed disk drive. I
+----------+---------+-------+---------------+-----------+--------------------------------+

APPENDIX D

BUFFER DESCRIPTOR FORMATS

a formal part of MSCP. The information in this Appendix is NOT
The formal specification for buffer
individual communications mechanism
information is summarized here in order
reference for all buffer descriptors in a

descriptors is in the
specifications. This
to provide a convenient
single document.

The format of the buffer descriptor used with the Unibus and
Q-bus is as follows:

In order to
include the
UBA purges.

31
+-------+-----------------------+
I chan Ibuffer physical addressl
+-------+-----------------------+
I reserved I
+-------------------------------+
I reservedl
+-------------------------------+

accomodate VAX-ll/780 UBAs, it is necessary to
UBA channel number so that controllers can request

	0000
	0001
	001
	002
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	7-01
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01

